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Spherical DCB-spline Surfaces with
Hierarchical and Adaptive Knot Insertion

Juan Cao, Xin Li, Zhonggui Chen, and Hong Qin

Abstract —This paper develops a novel surface �tting scheme for automatically reconstructing a genus-0 object into a continuous
parametric spline surface. A key contribution for making such a �tting method both practical and accurate is our spherical
generalization of the Delaunay con�gur ation B-spline (DCB-spline), a new non-tensor-product spline. In this framework, we
ef�ciently compute Delaunay con�gur ations on sphere by the union of two planar Delaunay con�gur ations. Also, we develop
a hierarchical and adaptive method that progressively improves the �tting quality by new knot-insertion strategies guided by
surface geometry and �tting error. Within our framework, a genus-0 model can be converted to a single spherical spline
representation whose root mean square error is tightly bounded within a user-speci�ed tolerance. The reconstructed continuous
representation has many attractive properties such as global smoothness and no auxiliary knots. We conduct several experiments
to demonstrate the ef�cacy of our new approach for reverse engineering and shape modeling.

Index Terms —Delaunay Con�gur ations, Spherical Splines, Knot Placement, Knot Insertion, Non-tensor-product B-splines.
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1 INTRODUCTION

THE problem of converting densepoint samplesor
piecewise meshesinto compactand high-ordercon-

tinuousrepresentationsfrequentlyarisesin a large variety
of applicationsin ComputerAided Design(CAD), medical
imaging,visualization,reverseengineering,etc.Continuous
representationscan facilitate tasks such as shapeinter-
rogation, segmentation,classi�cation, and surface quality
analysis/control.In principle, continuoussurfacescan be
representedand built using three general categories of
methods:implicit surfaces,subdivision surfaces,andpara-
metric splinesurfaces.

Among these three categories, parametricspline sur-
faceshave been favored in many applications,and such
method enablesmany downstreamproceduresincluding
free-form deformation,�nite elementanalysis.For exam-
ple, comparedwith subdivisionsurfaces,which keepglobal
smoothnesswithout cutting and stitching, but usually do
not have analytic expressions,parametricsurfacesadmit
ef�cient closed-formevaluation and compactrepresenta-
tion. Comparedwith implicit surfaces whose derivative
evaluations(e.g.,tangency, curvature,or otherhigher-order
quantities)mayneedextensive discretizationandnumerical
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approximations,parametricsurfacesare simpler and more
ef�cient to design,control, evaluate,andrender.

1.1 Spherical Spline Surface Modeling

A large number of solid models in our daily life have
genus-0closedsurfacesas their boundaries.It is therefore
imperative to develop an effective way to model genus-0
surfacesusingparametricsplineswith global smoothness.

Closed genus-0 spline surfaces can be constructed
throughmany approaches.The commonly-usedparametric
surface patchessuch as B-splines require domainsto be
simpleplanarregionssuchasrectangles.Hence,a straight-
forward constructive methodis by partitioningthe original
domaininto topologicaldisks and composingindividually
constructedsurfacepatches.The partitioningof the model
into local chartsandstitchingof adjacentpatchestogether
usuallyrequireextensive userinterventionandcouldbe la-
bor intensive.Enforcinghigh-ordercontinuityalongcutting
boundaryis alsoa challengingproblem.

To avoid such tediouscutting and gluing, constructing
a splinesurfaceglobally over onepiecedomainis a more
desirableapproach.Generalsplinesurfacescanbe de�ned
on manifoldsthat have non-disktopology. Many methods
and function spaces(seesurveys in [1] Chapter9.7 and
[2]) have beenusedsuccessfullyin copingwith data-�tting
and reconstructionproblemson surfaces,such as radial
basisfunctions[3], multi-resolutionmethods[4], trivariate
methods[5], spherical splines [6], polycube splines [7]
and manifold splines [8]. Spline surfacessuch as DMS-
splines,T-splines,and polycubesplinesde�ned over dis-
cretemeshesusuallyneedto punchasmallnumberof holes
on thedomainbeforebuilding theglobalaf�ne mapping.It
unavoidably leadsto somediscontinuitieson the de�nition
domain, and hence the constructedspline surfaceshave
singularities where additional geometric patching to �x
suchproblemsis necessary.
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To avoid bothpartitioningdiscontinuityandsingularities,
the most natural parametricdomain for closed genus-0
surfacesis sphere.Uponsphericaldomains,globallycontin-
uousparameterizationswithout cutting/stitchingnor singu-
larity pointscanbecomputed.Onecanobtainanautomatic
splinereconstructionschemeanda globally Ck-continuous
representation.This paperstudiesthe constructionof such
a naturalsplinesurfaceon the sphericaldomain.

1.2 Related Work

Sphericalsplinesand their applicationssuchasdatainter-
polationandapproximation,have beenstudiedby a number
of researchersfrom viewpoints of CAGD and physical
simulationapplications[6] in recentdecades.Comprehen-
sive works on sphericalsplinesand their interpolationand
approximationhave beensurveyed or discussedin papers
such as [6], [9], [10]. In fact, most existing splinescan
be generalizedto sphericaldomainand will have similar
propertieswith their planar counterparts.However, they
may also inherit drawbacksfrom the planar case.In the
followings,we discussa few most-widelyusedsplines.

Tensor-product splines and radial basis functions.
In [4], tensor-productpolynomialsplinesandtrigonometric
splineswereproposedfor �tting functions/dataon sphere,
based on multi-resolution methods. Buss and Fillmore
de�ned barycentric combinationsof spherical points as
least-squaresminimizationsof weightedgeodesicdistance,
which provide direct generalizationof planarsplinecurves
to sphericalones [9]. Gregory investigatedadaptive ap-
proximationto scattereddatagiven over the surfaceof the
unit sphereby radialbasisfunctions[3]. For sphericaldata
interpolation/approximation,tensorproductsof univariate
splines are not good choices, since data locations are
usuallynot equallyspacedover a regulargrid. Radialbasis
functions are not good candidateseither, since they are
moresuitablefor rotationallysymmetricdatavalues[11].

Bernstein-Bézier patches.Alfeld et al. [12] presenteda
naturalway to de�ne barycentriccoordinateson spherical
trianglesby omitting the usualrequirementof partition of
unity. Basedon theaforementionedwork, thehomogeneous
sphericalBernstein-B́ezier (SBB) [12], [13] and spherical
simplex splines [14] were proposed,which are spherical
analoguesof Bernstein-B́ezier polynomials and simplex
splines, respectively. SBB polynomials are popular and
have beenwidely studied [11], [15]. However, since the
functional space spannedby Bernstein-B́ezier elements
highly dependson domain tessellations,the represented
surfaceis uniquelyde�ned subjectto certaindomaintessel-
lation. Thechallengeto mergepiecewiseSBB polynomials
with higher-ordercontinuity is anotherdisadvantageof this
approach.

Triangular B-splines. Triangular B-spline (or DMS-
spline) is anotherpowerful and well-known scheme[16],
[17] basedon simplex splines [18]. It has been widely
studiedandappliedto applicationssuchasscatteredfunc-
tional data �tting, modeling,and visualization[19], [20],
[21], [22], [23]. Becauseof the supremeability of DMS-
spline,its sphericalanalogue— scalarsphericaltriangular

B-spline, continuesto attract researchers'interest.Scalar
sphericalDMS-spline inherit many propertiesfrom their
planar counterpart,such as the capability of represent-
ing any piecewise smooth surfaces of Ck� 1 continuity
by degree-k splines and including SBB polynomials as
a special case.It has been applied to data �tting appli-
cations[24], [25]. However, sphericaltriangular B-spline
also inherits drawbacks from its planar counterpart:for
any given setof knots,onehasto explicitly add the “knot
cloud” (i.e., auxiliary knots) in advancein order to form
a knot sequencefor all the basis function construction.
The auxiliary knot placementis less-intuitive and labor-
intensive. So far it is still not clear how theseauxiliary
knots could affect the spline basis and the �nal surface
in an intuitive and quantitative way. Additionally, surface
constructedby DMS-splinesmaynot beasvisually smooth
dueto the“knot line” phenomenon[26]: thecurvaturealong
the imagesof the line betweentwo knotsin the parametric
domain is larger than other regions, and a post fairing
processis urgently needed[25], [27].

1.3 Motiv ation and Contrib ution

In order to reconstructa useful genus-0closed surface
from data,a visually pleasant,everywhereCk, andanalytic
surfacerepresentationis strongly desired.Recently, a new
bivariatesimplex splineschemebasedon Delaunaycon�g-
uration hasbeenintroducedinto the geometriccomputing
community by Neamtu [28], [29]. The simplex splines
basedon Delaunaycon�gurations(we call themDelaunay
con�guration B-splines or DCB-splines for brevity) are
judgedto be the most convincing multivariategeneraliza-
tion of univariateB-splines[30], and planarDCB-splines
have been used in the application of data reconstruc-
tion [31] [32]. DCB-splineshave many attractive theoretic
andcomputationalproperties,suchasoptimal smoothness
and polynomial reproducibility , and free from auxiliary
knots, thereforeit is ideal for the �tting purpose.

Since spherical splines have many important applica-
tions, it is importantto develop the theoryof DCB-splines
on the sphericaldomain,anddesignuseful algorithmsfor
their computationandapplications.In this paper, we further
extend the conceptof Delaunaycon�guration to sphere,
formulatea sphericalanalogueof DCB-spline,and use it
to automaticallyreconstructgenus-0closedsurfaces.The
speci�c contributionsof this work include:

1. We constructthe Delaunaycon�gurationsdirectly over
the sphere and develop an effective computational
method.A direct way to calculatesphericalDelaunay
con�gurations is to compute3D higher-order Voronoi
diagram.As aneffectivealternative,we obtainspherical
Delaunaycon�gurationsby merging togethertwo sets
of planar Delaunaycon�gurations, while signi�cantly
reducingits computationalcomplexity.

2. As our experimentsdemonstrate,if we constructthe
DCB-spline using degree-k basis functions and there
are no degenerateknots, the �tted surface is Ck� 1

continuouseverywhere.Thevisually-pleasantsurfaceis
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representedwithout any patchingandstitching,andthe
continuity is naturallypreservedwithout any additional
constraints.The �tting processis adaptive andcapable
of satisfyingany user-speci�ed error tolerance.

3. We proposean automaticandeffective surfacere�ning
algorithm,in which theknot insertionis adaptively con-
trolled by surfacegeometryand�tting errordistribution
in a hierarchicalfashion.In the initial step,knots are
distributedaccordingto thecurvednessof original data.
In later iteration step, an appropriatenumberof new
knotsareaddedadaptively accordingto thedistribution
of �tting error.

The remainderof this paperis organizedas follows: in
Section 2, we extend the de�nition of Delaunaycon�g-
uration to the sphericalsetting and proposean effective
computationmethod.Section3 describesthe de�nition of
sphericalDelaunaycon�guration B-splines.In Section4,
we provide the overview and the technicaldetails of our
new algorithm for the automatic�tting scheme.We show
our experimentalresults in Section 5, and concludethis
paperin Section6.

2 SPHERICAL DELAUNAY CONFIGURA-
TIONS

This section �rst discussesthe conceptsand notions of
planarnear/far typeDelaunaycon�gurations,sphericalDe-
launaycon�guration, and their intrinsic relationship,then
proposesan ef�cient computationalgorithm for spherical
Delaunaycon�gurations.

2.1 Planar and Spherical Delauna y Con�gura-
tions

Let W bea setof non-degenerateknotson planeT, i.e., no
morethanthreeknotsareco-circularor co-linear. If A is a
�nite set, we denoteits size by #A. We de�ne the near-
type Delaunay con�guration and the far-type Delaunay
con�guration as follows:

De�nition 1: A degree-k near-typeDelaunaycon�gura-
tion of a givensetof knotsW is a pair of setsDn = (DB;DI )
suchthat (1) DB;DI � W satisfythat#DB = 3, #DI = k and
(2) the circumcircleof DB containsonly DI (i.e., no other
knots from W) in its interior .

In De�nition 1, the subscript “B” and “I” represent
“boundary” and “interior” knots, respectively, sinceknots
DB and DI lie on the boundary and in the interior of
a circumcircle, respectively. Similarly, the subscript “E”
standsfor “exterior” knots in the following de�nition.

De�nition 2: A degree-k far-type Delaunaycon�gura-
tion of a givensetof knotsW is a pair D f = (DB;DE) such
that DB;DE � W, #DB = 3, #DE = k and the circumcircle
of DB containsonly DE (i.e., no otherknotsfrom W) in its
exterior.

Two examplesare illustrated in Fig.1(left): a degree-
3 near-type Delaunay con�guration Dn = ff 5;6;7g;
f 8;9;10gg is shown in the blue circle, anda degree-3far-
type Delaunaycon�guration D f = ff 2;4;10g; f 1;3;5gg is
shown in the black circumcircle.

Fig. 1. Planar near-type and far-type Delaunay con�gur a-
tions (left), and spherical Delaunay con�gur ations (right).

We denote the families of all near-type and far-type
Delaunaycon�gurations of degree k associatedwith the
set W as Dn(W) and D f (W), respectively. The near-type
Delaunay con�guration is the ordinary planar Delaunay
con�guration.

A spherecan be partitionedinto two disjoint parts by
specifyingand removing a circle on the sphere.To avoid
ambiguity, we denote the part with smaller area as the
interior of thecircle on sphere.A greatcircle c partitionsa
sphereinto two equal-arearegionsM1 and M2, either one
canbe consideredas the interior in suchcase.

Then,in completeanalogyto De�nition 1, we cande�ne
setU of n knots on the sphereS2 = f xj kxk = 1;x 2 R3g
andDelaunaycon�gurationby sphericalgeodesicsandcall
this sphericalDelaunaycon�guration.

De�nition 3: A degree-k sphericalDelaunaycon�gura-
tion of a givensetof knotsU is a pair of setsX = (XB;XI )
suchthat (1) XB;XI � U satisfy that #XB = 3, #XI = k and
(2) thesphericalgeodesiccircumcircleof XB containsonly
XI (i.e., no otherknots from U) in its interior .

We denote the family of all sphericalDelaunaycon-
�gurations of degree k associatedwith the knot set U
on sphere as SD(U). Examples of spherical Delaunay
con�gurations are shown in Fig.1(right): two degree-
2 spherical Delaunay con�gurations ff 1;4;5g; f 2;3gg,
ff 11;12;13g; f 9;10gg and a degree-3sphericalDelaunay
con�guration ff 6;7;8g; f 9;10;11gg. We denoteunordered
sphericalDelaunaycon�gurationsas eX = XB

S
XI . The set

of all sphericalDelaunaycon�gurationsX correspondingto
the sameunorderedDelaunaycon�guration eX is denoted
as < X > . The family of unorderedsphericalDelaunay
con�gurationsof the setU on S2 is denotedas [eX].

2.2 Spherical Delauna y Con�guration Computa-
tion

Since eachDelaunaycon�guration correspondsto a ver-
tex of high-order Voronoi cell, Delaunay con�gurations
can be obtainedduring the constructionof the high-order
Voronoi diagrams[33]. Similarly, the sphericalDelaunay
con�gurations can be obtainedby computing high-order
Voronoi diagrams on sphere. In other words, we can
obtain sphericalDelaunaycon�gurationsby computing3-
dimensionalVoronoi diagramson sphere.However, this
computationmethodis very expensive, i.e., computing3-
dimensionalVoronoi diagramsneedsquadraticcomplexity
even for the �rst-order case [33], [34], [35]. Here we
proposea simplerandmoreef�cient methodfor spherical
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Delaunaycon�gurationcomputation,asanextensionto the
sphericalVoronoidiagramcomputation[36]. In [36], using
two inversions,the sphericalVoronoi diagramof a given
setof pointson a sphereis obtainedby gluing two planar
Voronoi diagramstogether. Similar to [36], we choosetwo
specialinversions,and prove that any sphericalDelauany
con�guration is invariate under at least one of the two
choseninversion.Then the Delaunaycon�guration set is
obtainedby merging two setsof planarDelaunaycon�gura-
tions.Notethat,thesphericalDelaunaytriangulationin [36]
is only a degree-0sphericalDelaunaycon�guration,which
is a special casediscussedin our paper. With spherical
Delaunaytriangulation,onecanonly de�ne degree-0basis
functions,which is not enoughfor the purposeof general
spline constructionand surface�tting. In this section,we
computegeneralDelaunaycon�gurationson sphere,which
enablesus to de�ne basisfunctionsof higher degreeson
the sphericaldomain.

We �rst introduce an inverse transformation in 3-
dimensionalEuclideanvectorspace:TheInversionwith the
inversioncenterat point s is de�ned by

f s (v) =
v� s

kv� s k2 + s ; (1)

wherek � k is the EuclideanL2 norm. For both circles on
sphereandplane,we now usepre�x ext andint to represent
the interior andexterior regionsof circles,respectively. For
example, extSc standsfor the exterior of sphericalcircle
Sc on sphere;intPc standsfor the interior of circle Pc on
plane.Let inversioncenters be on the unit sphereS2 and
Sc be a sphericalcircle on the unit sphere,thenf s hasthe
following properties:

(1) f s mapsS2 to a plane,which we call the inverse
planeTs associatedwith the inversioncenters .

(2) 8Sc � S2; f s (Sc) = Pc;Pc � Ts .
(3) If s 2 intSc, then f s (intScnf s g) = extPc.
(4) If s 2 extSc, then f s (intSc) = intPc.
Fig. 2 shows an exampleof inversionwith its inversion

centerat point (colored in red) s = (0;0;1), which maps
unit sphereS2 onto planeT(0;0;1) : S2 ! f (x;y;z) 2 R3jz=
0:5g. Meanwhile,it mapsthesphericalcircle Sc (decorated
by the blue curve on the sphere)onto the planarcircle Pc
(decoratedby the big blue curve) on plane T(0;0;1). Since
Sc hass in its interior, f s mapsthe interior of Sc (colored
as the yellow region on the sphere)to the exterior of Pc
(coloredas the yellow region on the plane).

Given a point set X = f t i ji = 0; :::;m� 1g � S2, we
denotetheir imagesunder inversion f s by Xs = f s (X),
wheref s (t i) 2 Ts . Whenthereis no ambiguity, we simply
use the indexing integers to representpoints when their
coordinatesare not involved. For example,a set of points
t0; t1; :::; tm� 1 are denotedas f 0;1; :::;m� 1g. The above
observationsimmediatelyleadto following properties.

Property1: A degree-k sphericalDelaunaycon�gura-
tion SD = f XB;XI g has the samecombinationalstructure
as a near-type (far-type) Delaunay con�guration Dn =
f Xs

B ;Xs
I g (D f = f Xs

B ;Xs
E g) if the sphericalcircumcircle

of XB hasinversioncenters in its exterior (interior).

Fig. 2. Inversion function f s (v). When s = (0;0;1), f s
transfers unit sphere onto plane T(0;0;1) : z= 0:5.

We say that two pairs have the “same combinational
structure”if their elementsandordersare the same:XB =
Xs

B andXI = Xs
I (XI = Xs

E ).
Property2: Given a spherical Delaunay con�guration

SD = f XB;XI g on S2, supposethere are two inversion
centerss1 and s2, locating in the interior and exterior of
sphericalcircumcircle of XB, respectively, then under the
inversetransformationsf s1 andf s2, SD will be mappedto
a planarfar-type Delaunaycon�guration D f = f Xs1

B ;Xs1
E g

on inverseplaneTs1 andanear-typeDelaunaycon�guration
Dn = f Xs2

B ;Xs2
I g on inverseplaneTs2, respectively.

Property1 implies that, for a givenknot setU on sphere
S2, onepartof SD(U) hasthesamecombinatorialstructure
as the near-type Delaunaycon�gurations Dn(Us ), while
the rest part has the samecombinatorialstructureas the
far-typeDelaunaycon�gurationsD f (Us ). Computingnear-
type Delaunaycon�gurationshasbeenwidely studied,so
if we can computefar-type Delaunaycon�gurations,then
the sphericalDelaunaycon�gurationscanbe obtained.

According to Property2, a far-type Delaunaycon�gu-
ration on one inverseplane has the samecombinational
structurewith a near-type Delaunaycon�guration on an-
otherinverseplaneassociatedwith anappropriateinversion
center. Furthermore,for the given knot set U and an
inversioncenters1 on sphere,supposeSci , i = 0;1; ::;q� 1
are all the sphericalDelaunaycon�gurations whose cir-
cumcircleincludess1 in their interior. ThenProperty2 also
impliesthatif thereis anotherinversioncenters 2 satisfying
s2 2

T q� 1
i= 0 extSci , then for eachfar-type Delaunaycon�gu-

ration on inverseplaneTs1, thereis a near-type Delaunay
con�guration on Ts2 correspondingly. In other words, all
far-type Delaunaycon�gurationson inverseplaneTs1 can
be computedfrom near-type Delaunaycon�gurations on
the secondinverseplaneTs2.

Given a knot set U � S2, let s1 = (0;0;1) and s2
be its antipole, say, (0;0; � 1). Supposes 1;s2 =2 U and
U

S
f s1;s2g is not degenerated,i.e., no morethan3 knots

are spherically co-linear and no more than 4 knots are
sphericallyco-circular. We reducethe computationof De-
launaycon�gurationsof pointson a sphereto respectively
computingDelaunaycon�gurations of two setsof points
in R2 and merging identical ones in different Delaunay
con�guration sets.The algorithmis as follows.

Thecomputationalcomplexity of Step2 is O(n). In Step
3, since Delaunaycon�guration is implied in computing
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Algorithm 1 Computationof degree-k sphericalDelaunaycon-
�gurations.

Input: knot setU � S2.
Output: degree-k sphericalDelaunaycon�guration setD.

1: D /0
2: map knot set U by function f s i (v) to planesTs i and get

imagesUs i , i = 1;2
3: compute the degree-k near-type Delaunay con�gurations

f Ds i
n g of Us i , i = 1;2

4: D D
S

f Ds1
n g

5: for eachDn = (Xs2
B ;Xs2

I ) 2 f Ds2
n g do

6: if f s2(s1) is in the interior of circumcircleof Xs2
B then

7: D D
S

Dn
8: end if
9: end for

10: return D

higher-orderVonoroi diagram,we can�nish its calculation
in O(nlogn) usingthe methodin [33]. In Step5, no more
than(2k+ 1)n con�gurationswill besearched,which takes
O(n) to �nish. In Step 6, each operationtakes O(1) to
�nish. Theentirealgorithmhasonly O(nlogn) complexity,
much lower than that of direct computationof high-order
Vonoroi diagramin 3D space,which is usuallyhigherthan
O(n2) [33].

3 SPHERICAL DELAUNAY CONFIGURATION

B-SPLINES (SPHERICAL DCB-SPLINES)

Sphericalsimplex splinesaresphericalanaloguesof planar
simplex splines.Thesesphericalsimplex splinesarelocally-
supportedsmoothfunctionson sphericaldomain.We intro-
duceconceptsandnecessarynotationsof sphericalsimplex
splineshereandreferreadersto [14], [24] for moredetails.

Givenaknotseton theunit sphereV = f t0; t1; :::; tk+ 2g�
S2 anda split setW = f t i0; t i1; t i2g� V, W formsa spherical
triangleDt i0t i1t i2 on S2. Thenfor point p 2 S2, its spherical
barycentriccoordinates(p0; p1; p2) with respectto Dt i0t i1t i2
is de�ned as:

(p0; p1; p2) =
�

det(p; t i1; t i2)
det(t i0; t i1; t i2)

;
det(t i0;p; t i2)
det(t i0; t i1; t i2)

;
det(t i0; t i1;p)
det(t i0; t i1; t i2)

�
;

(2)

wherewe treat pointsas vectors,anddet(a;b;c) indicates
the signedvolumeof the tetrahedronformedby the origin
and a;b;c. Much work [9], [12], [37] has focusedon the
de�nition and discussionof sphericalbarycentriccoordi-
nates,and we choosethe one (Equation (2)) developed
in [12] becauseof its simplicity as well as its many
properties shared by its planar counterpart.Unlike the
planar braycentriccoordinates,when p lies on or within
spherical4 t i0t i1t i2, we have p0 + p1 + p2 � 1.

A degree-k sphericalsimplex splineassociatedwith knot
setV is recursively de�ned as:

M(pjV) =
2

å
j= 0

p j (pjW)M(pjVnf t i j g); p 2 S2; (3)

whenk = 0, V = f t0; t1; t2g anddegree-zerosimplex spline
is de�ned as

M(pjt0; t1; t2) =
c [t0; t1; t2)(p)
j det(t0; t1; t2)j

;

which is the normalized characteristicfunction on the
sphericalhalf openconvex hull of [t0; t1; t2).

Given a knot set U � S2, the spherical DCB-spline
associatedwith an unorderedDelaunaycon�guration eX is
denotedasBeX, andde�ned as:

BeX(p) = å
X2< X>

1
det(XB)

M(pjBeX); p 2 S2: (4)

For sphericalbarycentriccoordinatesthat do not yield
partition of unity, i.e.,

I (p) = å
eX2[eX]

BeX(p) � 1; p 2 S2;

in order to guaranteethe partition of unity for spherical
DCB-splines,we normalizeeachbasisin Equation(4) as:

BeX(p) =
BeX(p)
I (p)

; p 2 S2: (5)

The normalizedbasessatisfy the convex hull property.
Suppose[eX] has n elements,we index the unordered

spherical Delaunay con�gurations in [eX] as eXi , i =
0;1; :::;n � 1. Then the sphericalDCB-splinesurfacecon-
structedby basesin Equation(5) is de�ned as:

F(p) =
n� 1

å
i= 0

Bi(p)ci ; p 2 S2; (6)

whereBi(p) is thebasisfunctionde�ned by eXi , andci 2 R3

is its correspondingcontrol point.

4 SURFACE FITTING USING SPHERICAL

DCB-SPLINES

4.1 Problem Statement

Splinesurface�tting is a fundamentalproblemin computer
graphics,visualization,computeraided designand many
other application �elds. Our goal is to �nd a parametric
sphericalDCB-spline surface de�ned on the unit sphere
S2, approximatingan unknown surface M sampledby a
set of points X = f x0;x1; : : : ;xn� 1g. In our initial input,
thesesamplepoints are verticesof a genus-0polygonal
(triangular) mesh M, and we seek a rational parametric
sphericalDCB-surface(de�ned in Equation(6)) to �t the
input dataX , satisfying certaincriteria that measurethe
approximationquality. Let F(p) denotethe reconstructed
sphericalDCB-surface,and ui be the parametervalue on
sphericaldomainassociatedwith vertex xi , thenwe usethe
EuclideandistancebetweenF(ui) andxi , ei = kxi � F(ui)k,
to measurethe distancebetweenthe reconstructedsurface
F(S2) andtheoriginal surfaceM, we call ei the�tting error
of vertex xi .

Thetoleranceof rootmeansquare�tting error(RMSE)is
speci�ed by the user. The surface�tting problemtherefore
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becomesthe minimization of �tting error f eig so that the
RMSEis lessthanthespeci�ed tolerance.Like most�tting
processes,we minimize ei in the least-squaressense:

min
n� 1

å
i= 0

ei = min
n� 1

å
i= 0

kxi � F(ui)k2: (7)

4.2 Algorithmic Overview

Our goal is to createa sphericalDCB-splinesurfaceF(S2)
that best approximatesM. Like classical univariate B-
splinecurves,thefollowing threefactorstypically in�uence
the shapeof sphericalDCB-spline surface in the �tting
procedure:(1) surfaceparameterization,(2) knot selection
andplacement,and(3) controlpoint locations.It is possible
to constructan optimal sphericalDCB-splinesurfacefrom
given scatteredpoints by solving a nonlinearoptimization
problemwhenall parametervalues,knotpositions,andcon-
trol point positionsbecomeunknown. However, this leads
to a high-ordernonlinearoptimizationproblem(with many
variables)that can hardly be solved ef�ciently . Therefore,
like most existing standardapproaches,we take a more
ef�cient divide-and-conquer�tting strategy, following the
three-stageprocedure:parameterization,knot placement,
and leastsquaresminimization.

Givena surfaceM, we �rst computeits sphericalparam-
eterization:j : S2 ! M. Ideally, a parameterizationshould
have neitherangulardistortionnor areadistortion.Suchan
idealparameterizationis calledan isometry. Unfortunately,
given an arbitrary surface, due to the intrinsic geometry
obstacle,its isometry to a sphereS2 rarely exists. We
therefore seek a parameterizationthat minimizes angle
and areadistortion for subsequentsphericalspline �tting.
Conformal mapspreserve the shapeangle of the surface
over the parametricdomain, therefore, it is potentially
important for high-quality �tting in the subsequentsteps.
However, conformal maps could introduce relatively big
areadistortion (for example,a long branchregion on M
may shrink to a small parametricregion on S2). This is
undesirablefor spline�tting, becausein theseregionswith
largeareadistortion,we couldhave far fewer knotsfor ge-
ometricdetailson thelong branch.Thusa parameterization
that effectively minimizesboth angleand areadistortions
is mostdesirable.

Upon parameterization,we placeknotson the spherical
domainandconstructsphericalDCB-splinebasisfunctions.
For a givenknot sequenceon unit sphere,we canconstruct
basisfunctionsand associateeachof them with a control
point, thenwe optimize control point positionsby solving
a linear least-squaresproblem.

Finally, sinceit is usuallyunknown in advancehow many
knotsandcontrol pointsare requiredfor a speci�ed accu-
racy, we usea progressive procedureto adaptively adjust
thenumberof knotsandcontrolpoints.In general,this knot
adjustmentprocesscan proceedin either of the following
two ways: (1) start with a minimal or a smaller number
of knotsand iteratively increasethe numberof knotsuntil
satisfyingthe error bound;or (2) start with a maximal or
a largernumberof knotsanditeratively reducethenumber

of knots in order to satisfy the error bound. The second
way is usually more time-consumingespeciallywhen the
initial knots are not well determined[38]. Therefore,we
adjust knots using the �rst strategy. If the current �tting
errorei doesnot satisfythepre-assignedtolerance,thenwe
addmoreknotsandcreatemorebasesto re�ne the surface
�tting. We also exploit a heuristicmethodto optimize the
positionsof new knots,sothat in eachre�nementa number
of new knotscanbewell distributedandadaptedto surface
geometryand �tting error.

The surface �tting processis progressive. The input of
eachre�nement is a closedgenus-0surfaceM sampledby
f xig; the output is the sphericalDCB-splinewith control
pointsandei . We have the following �tting pipeline:

1) Specify a toleranceof the root meansquareof �tting
error (RMSE) e > 0;

2) Generatethe sphericalparameterizationof M;

3) Initialize knot positions;

4) ComputeDelaunaycon�gurationsby Algorithm 1 and
constructbasisfunctions(Equation(5)); thenassociate
eachbasisfunction with a control point.

5) Optimize control point positionsby solving the linear
least-squaresproblem:minå n� 1

i= 0 e2
i .

6) If the current�tting RMSE is lessthan e, then STOP,
otherwise,insertnew knotsonparametricregionswhere
�tting errorsarebig, andgo back to Step3).

4.3 Spherical Parameterization
The sphericalparameterizationhasbeenstudiedas a key
enabling technology in many geometric modeling and
processingtasks such as meshing,morphing, and shape
analysis.Sphericalparameterizationalgorithmsshall min-
imize angle distortions [39], [40], area distortions [41],
or a tradeoff betweenthesetwo indicators[42], [43]. For
our spline �tting purpose,minimizing angledistortionand
areadistortion togetheris most desirable.We discussour
sphericalmappingdistortion metric in Section4.3.1 and
brie�y addresshow to solve it in Section4.3.2.

4.3.1 Distortion of Spherical Mapping
A sphericalmappingj is a function from the unit sphere
domainS2 to a genus-0closedsurfaceM � R3, j : S2 ! M.
We approximateM andS2 usingtriangularmesheswith the
sameconnectivity of M, denotedas M = f T ;X g;S2 =
f T ;U g, whereT = f T1; : : : ;TNT g is the triangular facet
set,andX = f xig;U = f uig arevertex sets.We consider
the inverseparameterizationy := j � 1 to be linear within
eachtriangle.Thenthe mappingy is uniquelydetermined
by its valueson meshvertices,and for eachvertex vi we
want to solve its image ui on the sphericaldomain. We
denotethepositionof vertex xi on M as(x1

i ;x2
i ;x3

i ), andits
correspondingparameteron S2 as ui = (u1

i ;u2
i ;u3

i ), where
ui hasthe unit L2 norm: jjui jj2 = 1.

The angledistortion and areadistortion of the mapping
canbe measuredas follows:

Ea = Eangle =
t 1

t 2
+

t 2

t 1
; (8)
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EA = Earea = t 1t 2 +
1

t 1t 2
; (9)

wheret 1 andt 2 arethemaximalandminimalsingularvalue
of theJacobiande�ned on eachtriangleunderj . Following
[44] [45], we discretizetheenergy on eachtriangleTS2 (and
TM = y (TS2)) by

Ea =
cotx jaj2 + coth jbj2 + cotz jcj2

2area(TS2)
; (10)

where x ;h ;z are angleson the original triangle TM and
a;b;c are correspondingoppositeedgesof triangle TS2 on
sphere,respectively, and

EA =
area(TS2)
area(TM)

+
area(TM)
area(TS2)

: (11)

We always normalize M so that its area equals to
area(S2) = 4p. Then in the optimal case,an isometryhas
both Ea = 2 andEA = 2.

We want to minimize the following energy

E = å
TM2T

area(TM)Ea (TM) � (EA(TM)) l ; (12)

wherel is the weight balancingthe angleandareadistor-
tion. SinceEA � 2, bigger l indicateslarger emphasison
area-preserving,and we will get a more uniform mapping
by sacri�cing conformality.

4.3.2 Optimizing Spherical Mapping Distortion

To minimize the piecewise nonconvex energy in Equation
(12), we usea coarse-to-�neoptimizationto alleviate the
local optima problem. Like [45] and [42], we also use
progressive mesh[46] to get a uniformly-sampledcoarsest
mesh,andthenminimize the distortionuponprogressively
re�ned resolutions.The algorithmis as follows.

1. On the coarsestlevel, computean initial mappingj :
S2 ! M using [43] (becauseof its ef�ciency).

2. Minimize thesphericalparameterizationdistortionen-
ergy in Equation(12).

3. Progressto a �ner level, the newly-split verticesare
optimizedwithin its one-ringregion on the sphereby
minimizing distortionenergy in Equation(12).

The optimization performed over a spherical triangle
meshcanbe formulatedas:

min E(u0;u1; : : : ;uN� 1);
s.t. jjui jj2 = 1; i = 0; : : : ;N � 1;

(13)

whereN is thenumberof vertices,ui is a point on theunit
sphereparametricdomain.This is a non-linearoptimization
subject to quadraticconstraints.We develop an ef�cient
optimizer for this problemon triangularmeshes.It makes
good use of the derivative on every sphericalpoint, and
performcurve line searchfor eachvertex by examiningthe
function valueandgradienton that point.

Iteratively, we pick a vertex and optimize it on
the sphere when �xing all other points. In other
words, for a point u = ui , we shall minimize f (u) =
E(u0;u1; : : : ;ui� 1;u;ui+ 1; : : : ;un� 1), enforcing jjujj2 = 1.
We evaluatethegradientof f (u) at this point u, denotedas

Fig. 3. Distortion of spherical parameterization under dif-
ferent weights. (a-h) Bunny parameterization: (b,c) The front
and back of the bunny mapping (l = 0:5) on the sphere, (d)
The mesh on sphere; (e,f) Angle distortion (red: Ea � 4, blue:
Ea = 2, distortion values in between are evenly distributed
from blue to red) of the mappings under l = 0:5 and l = 5;
(g,h) Area distortion (red: EA � 3, blue: EA = 2) under different
l s. (i-p) Gargoyle parameterization: (i,j) Front and back views
of the color-encoded angle distortion of mapping computed
using [42], (k,l) area distortion color-encoded; (m-p) the
corresponding models computed using our method l = 0:2,
from same views directions. All the color-coding in (i-p) are
consistent, (for angle distortion, red: Ea � 6, blue: Ea = 2,
for area distortion, red: EA � 3, blue: EA = 2). More statistical
results can be found in Table 1.

Ñf (u), and check its magnitudeon the tangentplane: let

gu = Ñf (u)T u, then r (u) = jjÑ f (u)jj
�

1�
�

gu
jjÑ f (u)jj

� 2
�

.

Note that, r (u) is the magnitudeof Ñ f (u) projectedonto
u's tangentplane.Therefore,during iterations,eachtime
we pick a point having largestsuchmagnitudeto optimize:

u = Argmaxw2f ui ;i= 0;:::;n� 1g r (w):

Now on u, alongits negative gradientdirection� Ñ f (u),
we performa curve line searchon thegreatcircle, denoted
as cg, obtainedby the intersectionof the unit sphereand
thehyperplanepassingthroughtheorigin, u, and� Ñ f (u).
Furthermore,we can keep the curve line searchwithin
the union of u's one ring spherical triangles to avoid
unnecessarilysearchingregion that will cause�ip-o ver.
Denotethe union of all one-ringsphericalarcsas cr , we
start the searchfrom the intersectionpoint of cg and cr ,
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TABLE 1
Spherical parameterization under different weights. Here,
maxand avgindicate the maximal energy on triangle face
and the average energy (weighted by the face area on M);

Ea and EA are angle and area distortions, respectively.

Models Methods maxEa avgEa maxEA avgEA

Igea [42] 11.95 2.06 3.93 2.019
l = 0:2 11.29 2.004 55.7 2.14
l = 1 11.40 2.06 3.85 2.019
l = 5 13.58 2.06 3.16 2.012

Bunny [42] 19.12 2.76 5.42 2.11
l = 0:2 15.60 2.62 6.16 2.34
l = 10 38.66 2.83 4.28 2.08

Gargoyle [42] 16.95 2.89 8.96 2.14
l = 0:2 16.55 2.72 37.67 2.36

along cg towardsu, and iteratively divide the step length
by 2 beforenormalization.

We demonstratesomemappingresultscomputedusing
our algorithm.Fig. 3 shows the sphericalparameterization
computedon the Bunny and Gargoyle model. (a-h) show
the mapping of bunny. (a-d) are the mapping computed
underl = 0:5; andthecolor-codingvisualizestheareadis-
tortion, wherered indicatesEa � 4, blue indicatesEa = 2
(note that 2 is the minimal value), and distortion values
in betweenare evenly distributed from blue to red. (e-h)
show that under two different l s, two parameterizations
leadto differentangledistortionandareadistortion(in (g,h)
red: EA � 3, blue: EA = 2). (i-p) illustrate the spherical
parameterizationof gargoyle model, with a side by side
comparisonbetween[42] and our method.Note that the
algorithmintroducedin [42] minimizesthe L2 stretch[47]
which nicely preservesboth angleandareadistortions.We
show that using different l we can �e xibly control the
mappingbehavior. For example,in (e-h),we increasel to
improve the area-preservingproperty of the mapping;on
the other hand,in Fig. 3(m-p) we set l = 0:2 to improve
the mappingconformality.

Table 1 shows more statistical resultsof the spherical
mapping.Under different weights,parameterizationshave
differentangleandareadistortions.Largel emphasizesthe
area-preserving(e.g.,seethe rows wherel = 5;10) while
small l betterkeepsconformality(e.g.,seetherows where
l = 0:2). All modelsin this tablearedataprovidedby [42],
wherethe Bunny modelhas69:6k triangles,Igeahas100k
triangles,andGargoyle has200k triangles.

Our optimization is very ef�cient: when l = 1, 10k
iterationsusuallytake only 0:5 second(biggerl makesthe
derivative computationslightly slower; e.g.,when l = 10,
10k iterationstakes about 0:7 second).Note that in each
iterationwe move onevertex alongits negative gradientto
a locally optimalpositionwithin its one-ringneighborhood.

4.4 Adaptive Knot Inser tion

Knot sequenceis important in recovering the underlying
smooth curve and surface from discretely-sampleddata
points for any spline-centricrepresentation.In particular,

Fig. 4. The Bunny model (a) with 35k vertices, its param-
eterization (b), and initial knot placement. (c) Color-coded
curvedness and 100 initial knots placed following curvedness
distribution.

discretedatapoints acquiredfrom a physicalobject have
considerablegeometriccomplexity, and the reconstructed
shape may have signi�cant difference from the actual
physicalsurfaceif the knotsarenot reasonablydistributed
according to the geometricshapevariation. Despite the
fact that the quality of the reconstructedsurface depends
heavily on different strategies for knot placement,there
is no effective and intuitive way to place knots at their
best possiblepositions accordingto the minimization of
RMSE. In this section,we introducea heuristic method
to optimize knot locationsandadjustthe numberof knots
adaptively in a hierarchicalfashion:we start with a small
numberof knots, and then add more knots adaptively in
eachsubsequent�tting iteration so that the reconstructed
surfaceapproximatesscattereddatasamplesprogressively.

In Section 4.4.1, we �rst introduce a geometricmea-
surementand then de�ne an energy function. Through
minimizing such energy function, we obtain the knots in
the initial �tting step accordingto the surface geometry.
After the initial �tting step,�tting errorswill betterguide
the placementof new knots. In Section 4.4.2, a similar
energy function is de�ned, and by minimizing this new
energy function, we can insert knots in a greedyway: in
each�tting step,more knots will be addedto the regions
with larger�tting errors.In Section4.4.3,theadaptive knot
placementalgorithm is describedand parametersusedin
the energy functionsareexplained.

4.4.1 Placement for Initial Knots

Thenumberof knotsin someregionsof theparametricdo-
main is closelyrelatedto thenumberof controlpointsover
the correspondingsurfaceregions.In principle, morecon-
trol points arenecessaryin order to model sharpfeatures,
ridges, valleys, or prongs [48]. That means,more knots
shall be placedin the parametricdomaincorrespondingto
featureregions. Hence,we �rst introducea measurement
of surfacegeometryto identify regionswith features.

Surface geometry measurement.Curvatureis themost
importantintrinsicquantityto differentiallycharacterizethe
local shapeof curves and surfaces.We use the sum of
absoluteprincipalcurvaturesjk1j + jk2j asthemeasurement
of how much a surface bends(a.k.a. the “cur vedness”)
at any point, and we denoteit as k . The calculationof
the principal curvatureon discreterepresentationsuch as
triangular meshesis not trivial. One popular approachis
to �rst estimatecurvature tensor, from which principal
curvaturescan be extracted[49], [50], [51]. In this paper,
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we computethe curvature tensoron eachmeshvertex xi
using the method proposedin [49]. Then the principal
curvaturesandthe local “curvedness”canbe obtained.We
usek i to denotethe curvednessof vertex xi . In Fig. 4(c),
the normalizedcurvednessof eachvertex is color-coded
andvisualizedon the parametricdomain.As shown in the
color-bar, the more curved regions are in white and less
curved regionsare in orange.

Supposewe have K knotsto beplacedover thespherical
domainin this initial stepanddenotethemasT0 = f tkjk =
0;1; :::K � 1g. Since curvednessis a measurementof the
geometryof inputmesh,wehopethatmoreknotsareplaced
in regionswith larger curvedness.We de�ne a curvedness
function k (t); t 2 S2 on the parametricdomainas follows:
k (t) = k i if t is the parametricpoint correspondingto
vertex xi ; otherwise,k (t) in a triangle formed by three
parametricpoints is de�ned by linear interpolationof its
valuesat the verticesof the triangle.Assumeeachknot tk
coversa subregion Wk � S2, we computethe accumulated
curvednessin Wk's correspondingsurfacepatchXk by:

ek =
Z

t2Wk

k a (t)ds ; (14)

where s is the area element on sphereand a > 0 is
a control parameter. We shall decomposethe parametric
domaininto subregionsf Wkjk = 0;1; :::K � 1g with similar
accumulatedcurvednessek and naturally chooseits mass
centerasa knot. Notice that, a large a will leadto a �ner
decompositionof the region with large curvedness.

However, there are a numberof ways to partition the
parametricdomain, such that each sub-patchhas evenly
accumulatedcurvednessek, evaluatedby the discretever-
sionof Equation(14). It is desirableif eachsub-region can
be asroundaspossible,suchthat a knot tk canbe a good
representativeof this sub-regionWk. Therefore,we measure
the distancesbetweentk andotherpointsin Wk, andre�ne
Equation(14) to:

e�
k =

Z

t2Wk

k a (t)kt � tkk
2ds ; (15)

from which an energy function is de�ned as:

F 1(tk;Wk;k = 0;1; ::;K � 1) =
K

å
k= 1

e�
k : (16)

The knot locations f tkjk = 0;1; :::K � 1g, as well as the
decompositionf Wkjk = 0;1; :::K � 1g, can be obtainedby
minimizing the energy function formulated in Equation
(16). Later, we will show the methodon how to minimize
the energy function of Equation(16).

Fig. 4(c) shows that 100 initial knots are placed by
minimizing the energy function of Equation (16), where
a is set to 4. We can seethat knots tend to concentrate
in the regions with large curvedness.Given such knots
f tkjk= 0;1; :::K � 1g, thesphericalDelaunaycon�gurations
can be obtainedby Algorithm 1. Then the basisfunctions
canbe constructedimmediately, followed by the computa-
tion of associatedcontrolpointsto beoptimizedvia solving
the linear leastsquaresproblemde�ned in Equation(7).

Fig. 5(a,b)illustratethesplinesurfaceandcontrolpoints
constructedfrom the initial knots,respectively. Meanwhile,
the �tting error at eachvertex of the meshsurfacecanbe
evaluated.We denotethe maximumand minimum values
of ei ; i = 0; :::;n � 1, as emax and emin, respectively, and
normalize the �tting error at vertex xi by ei = ei � emin

emax� emin
.

Fig. 5(c) visualizesei of the reconstructedsurface after
the initial �tting. The blue and white colors indicate the
minimum and maximum of ei , respectively. The color-
coded�tting errors,as well as the initial knots, are also
shown in the parametricdomainin Fig. 5(e).

4.4.2 Knot Placement in the Adaptive Fitting Process

After the initial �tting process,the �tting errorswill better
guide the placementof new knots. Obviously, on the
parametricdomain,regionshaving larger �tting errorswill
needmore knots during the re�nement process.Without
lossof generality, let us assumethat K knotsT j = f tkjk =
0; :::K � 1g are going to be placedover the domainin the
jth adaptive �tting iteration (here j � 1, and if j = 0, it is
the initial iteration/process).A �tting error function e(t) in
the jth iterationstepcanbe de�ned in the samefashionas
k (t): if t is the parameterpoint correspondingto vertex xi ,
e(t) = ei , where�tting errorei is obtainedfrom the( j � 1)th

�tting iteration; otherwise,e(t) in a triangle formed by
three parametricpoints is de�ned by linear interpolation
of its valuesat the verticesof the triangle. Similar to the
placementfor initial knots,we replacethecurvednessk (t)
in theenergy functionof Equation(16)with the�tting error
e(t) andminimize function

F 2(tk;Wk;k = 0;1; ::;K � 1) =
K� 1

å
k= 0

Z

t2Wk

ea (t)kt � tkk
2ds :

(17)
By minimizing energy in Equation(17), we caninsertnew
knotsadaptively subjectto the �tting error distribution.

In Fig. 5(f), 100 new knots are insertedafter the initial
�tting stepby minimizingenergy functionof Equation(17).
It canbe seenthat the newly-addedknotsareconcentrated
at the regions with large �tting errors. More knots are
insertedprogressively until the �tting RMSE satis�es the
given threshold.

4.4.3 Energy Minimization and Parameter Selection

It maybe notedthat, theenergy functionsin Equation(16)
and Equation (17) also occur during calculationof cen-
troidal Voronoi tessellations(CVT) constrainedon sphere,
which was introducedin [52]. Both energy functions in
Equation (16) and Equation (17) are the so-calledCVT
energy functions

F (tk;Wk;k = 0;1; ::;K � 1) =
K� 1

å
k= 0

Z

t2Wk

r (t)kt � tkk
2ds ;

(18)
with densityfunction r (t) being k a (t) and ea (t), respec-
tively. Hence, Equation (16) and Equation (17) can be
minimized in the sameway as Equation(18). A widely-
usedmethodfor minimizing Equation(18) is an iterative
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methodproposedby Lloyd [53]. By incorporatinga quasi-
Newtonmethodto computecentroidalVoronoitessellations
proposedin [54], Yanet al. [55] introducedamoreef�cient
algorithmto minimizetheenergy functionof Equation(18).
In this paper, we adoptthe optimizationschemein [55] to
computethe tessellationandtheprojectionsof centroidsto
the sphere.For moredetailsaboutthe theoryof CVT and
its computationalmethod,pleaserefer to [52], [54], [55].

It has been shown that a minimizer of Equation (18)
is a specialtessellation,where Wk is the Voronoi region,
and eachknot tk is the projection of the centroid of Wk
to thesphere.Accordingto Gersho's conjecture[56], upon
convergence,the energy de�ned in Equation(18) evenly
distributesin eachpatch.Theknotsareequallydistantfrom
eachother as much as possible,and the knot distribution
faithfully respectscertaindensityfunctions,i.e.,curvedness
functionor �tting errorfunctionsin thispaper. Hence,knots
obtainedby minimizing Equations(16) and (17) are very
suitablefor the applicationof surface�tting.

As discussedabove, it is almostimpossibleto determine
the right number of knots in either initial step or later
adaptive �tting stepssuchthatthereconstructedsurfacecan
reachthepre-assignederror tolerance.Fewer knotsinserted
in eachstepmeansmore iteration stepsand slower �tting
processes,while more newly-insertedknots in each step
meansfewer stepsbut canleadto a larger numberof total
knotsat theendof surface�tting. Therefore,weempirically
place 100 knots during the initialization stage and add
100 more knots during each re�nement. As mentioned,
larger a will force knots to be more concentratedon the
region with largedensity. In all of our experiments,we use
parametera = 4 in Equations(16) and(17), which usually
affordsthe�tting processto reachthetolerancewith agood
balancebetweenthe numberof re�nement stepsand the
numberof knots.The algorithmfor adaptive knot insertion
is illustratedin Algorithm 2.

Note that, in the later adaptive �tting steps,already-
existedknotsareall �x ed,andthe new knotsareplacedin
regions with large �tting errors.Namely, in the j th �tting
iteration, we constructa spline surface on the knot setS j

l= 0T l (seeStep14 of Algorithm 2). This may not be the
beststrategy for the placementof the entire set of knots.
Nonetheless,(1) it usuallyleadsto themonotonicdecrease
of the �tting error, which is crucial to the convergenceof
our re�nementstrategy; and(2) for eachnew insertion,we
only needto minimize Equation(17) subjectto the newly-
addedknots locally, and it is much more ef�cient than
runningfunctionminimizationon Equation(17) againwith
respectto all the currently-available (existing plus new)
knots for eachiteration.

5 EXPERIMENTAL RESULTS

This sectionpresentstheexperimentalresultsof our surface
�tting framework. We perform all our �tting experiments
on a laptop PC with a 2.2GHz Intel Duo-Coreprocessor
and 2GB memory. We apply our surface�tting algorithm
to severaldiscretemodels.All thesedatasetsareuniformly

Algorithm 2 Adaptive knot placementalgorithm for degree-k
sphericalDCB-splinesurface�tting.

Input: mesh M = f xig with parameterizationmesh P =
f uig, thresholdof root meansquare�tting error e.

Output: degree-k sphericalDCB-splinesurface.
1: j  0 f �tting iterationnumberg
2: densityfunction r (t)  0
3: K  100 f the numberof knotsaddedin eachstepg
4: T  /0 f knot set for surfacereconstructiong
5: while RMSE > e do
6: if j = 0 then
7: calculatethe curvednessfunction k (t)
8: r (t)  k (t)
9: else

10: calculatethe �tting error function e(t)
11: r (t)  e(t)
12: end if
13: obtain knot set T j of K new knots by minimizing

Equation(18) with densityr (t)
14: T  T

S
T j

15: �t meshM basedon knot set T and update�tting
error ei of eachvertex xi

16: j  j + 1
17: end while
18: return splinesurface

scaledto �t within a unit cubein orderto normalize�tting
errors acrossdifferent models.A perturbationmethod is
usedto avoid knot degeneracy.

In Fig. 6, a quartic spline surface, its control points,
the normalized�tting error map and the meancurvature
of Bunny obtainedafter 7 roundsof re�nement areshown
in (a), (b), (c), and(d), respectively. Fig. 7(a,c,e)illustrate
more quartic spline surfaces reconstructedfrom models
of Brain, Gargoyle, and Pierrot. Their mean curvature
distributions are shown in (b), (d), and (f), respectively.
The convergencespeedis plotted in Fig. 11(a).

Fig. 8 illustratesan example of Fandisk model recon-
structedby cubicsplines.Wecanseein (a),computedknots
automaticallylocateneartheregion thatcorrespondsto the
model's sharpfeaturein the initial step.The reconstructed
surface,however, doesnot show sharpedges/cornersat the
initial stage(b). During subsequent�tting iterations,new
knots are insertedinto the region with large �tting error
progressively, and the surfaceroundingeffect in (e-g) has
almostbeeneliminated.

If knots are placedin generalpositions,i.e., locally no
morethanthreeknotslie on thesamegreatcircle, thenthe
reconstructedspline surface is globally Ck� 1 continuous.
On the other hand, if the knots are co-circular, then the
reconstructedsurfacecanhave lower degreesof continuity
in the correspondingregion. Certainly, modeling sharp
featuresis possibleif we intentionallyplacemultiple knots
or co-circularknots along featurelines on the parametric
domain. Using a similar strategy to [22], we can detect
sharpfeaturesand apply additional constraintsto enforce
relevant knots to be co-circular. In our framework, we
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Fig. 5. Reconstructed Bunny after the �rst �tting step. (a) Reconstructed surface; (b) Reconstructed surface with 680control
points; (c) Fitting error (maximum error 2:63%and root mean square error 0:376%); (d) Mean curvature distribution; (e) Initial
knots and color-coded �tting error map in the parametric domain; (f) Adaptive knot insertion in the second �tting step based
on the �tting error.

Fig. 6. Reconstructed Bunny after 7 �tting steps. (a) Reconstructed quartic surface; (b) Reconstructed surface with 5315
control points; (c) Fitting error (maximum error 0:47%and root mean square error 0:067%); (d) Mean curvature distribution.

Fig. 7. Examples of degree-4 spherical DCB-splines. From left to right: the �tted spline surfaces followed with mean curvature
distribution: Brain, Gargoyle, and Pierrot. Their maximum �tting error/root mean square error are: Brain (0:493%=0:090%),
Gargoyle (0:636%=0:065%), and Pierrot (0:574%=0:058%).

Fig. 8. Sharp feature modeling of Fandisk model using cubic splines. (a) Knot distribution according to the curvedness in
the initial �tting step; (b) Reconstructed surface in the initial �tting iteration; (c) Control points (the number is 582) of surface
in (b); (d) Color-coded �tting error map over surface in (b), with maximum error 9:56%and root mean square error 1:163%; (e)
Reconstructed surface obtained in the 8th iteration; (f) Control points (the number is 4994) of surface in (e); (g) Color-coded
�tting error map on surface in (e), with maximum error 0:866%and root mean square error 0:028%.

Fig. 9. Reconstructed Igea Surfaces by Quintic Splines using Different Methods. (a) Reconstructed quintic DMS-spline
surface in [27] and its mean curvature distribution (b); (c) DMS-spline surface of (a) after fairing, whose mean curvature
distribution is shown in (d); (e) Our quintic spherical DCB-spline surface and its (f) mean curvature distribution.
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can also integratea featureextraction pre-processingstep
and apply knot positionalconstraintsin the adaptive knot
placementstageto enforcesomeknots to be co-circular.

On theotherhand,in this Fandiskexperiment,bene�ted
from our CVT methodwhich usescurvednessand �tting-
errorsas density functions,knots tend to be placedauto-
matically on the parametricregion with large density. The
Fandisk model has clear feature lines on the parametric
domain,soeven thoughwe do not intentionallyplacerele-
vantknotsco-circularly, we seethatknotsareautomatically
placed close to sharp curves on the parametricdomain.
As a result, the reconstructedsurfacehasrecoveredsharp
featureselegantly.

Table 2 summarizesthe statisticsof our surface �tting
procedureon theaforementionedmodels,whereNv denotes
the vertex numberof the discretizedmodels,Deg denotes
thedegreeof sphericalDCB-splinesusedfor surfacerecon-
struction,andNc is thenumberof controlpoints.Themax-
imum �tting error is denotedasm:e: while the root-mean-
squareerror is denotedas rms. For eachof thesemodels,
100 new knotsare insertedduring eachre�nement stepto
improve the surfacequality, and the entireprocessof knot
placementandoptimizationtakes12-37secondsthroughout
thesurface�tting process.Notethat,thesubsequentprocess
of basisfunction updatingand control point optimization
is the most time-consumingstep, which can usually be
�nished in lessthan 1 minute for all the test models.For
example, the smallestBunny model (35K vertices) takes
7 iterations to reach root-mean-squareerror of 0:067%,
and in eachiteration process,the basisfunction updating
takesfrom 11.556to 14.308secondsandthe control point
optimization processtakes from 4.354 to 7.296 seconds.
The largestDog model (180K vertices)takes 9 iterations
to reachroot-mean-squareerrorof 0:021%,in eachiteration
process,the basisfunction updatingtakes from 22.352to
26.093secondsandthe control point optimizationprocess
takes from 14.266 to 17.689 seconds.There exist many
effective methodsfor solving linear leastsquaresproblems,
andin this paper, we usetheSingularValueDecomposition
(SVD) methodbecauseof its stability.

Fig. 10. Mean curvature distribution comparison of DMS-
spline and spherical DCB-spline for Dog model. (a) Mean
curvature of degree-5 DMS-spline surface in [25]; (b) Mean
curvature of degree-5 spherical DCB-spline surface.

Our proposedframework is alsosuitablefor reconstruct-
ing surfaceswith Ck� 1 continuity. Comparedwith lower-
degree spline surfaces,higher-degree spline surfaces(1)

Fig. 11. Root Mean Square Errors (RMSE) of surface
�ttings . (a) The log of RMSEs (y-axis) versus the number
of �tting iterations (x-axis) for quartic surfaces reconstructed
from models of Bunny, Brain, Gargoyle, and Pierrot, with 100
knots being added in each �tting step. (b) The log of RMSEs
versus the number of �tting iterations for cubic, quartic, and
quintic surfaces reconstructed from Igea model with 100
knots being added in each �tting step.

TABLE 2
Statistics of Surface Fitting Experiments.

Model Nv Deg Nit Nc m:e:(%) rms(%)

Bunny 35K 4 7 5315 0.470 0.067
Brain 100K 4 11 8267 0.493 0.090
Gargoyle 100K 4 8 6040 0.636 0.065
Pierrot 93K 4 4 3001 0.574 0.058
Igea 50K 3 8 5556 0.378 0.042
Igea 50K 4 7 5304 0.461 0.042
Igea 50K 5 6 5286 0.559 0.040
Fandisk 56K 3 8 4994 0.866 0.028
Dog 180K 5 9 7790 0.344 0.021

inherently have higher-order continuity, (2) usually take
less iteration stepsfor better �tting, but (3) requiremore
computationtime to satisfythesamethresholdrequirement.

The convergencespeedof cubic, quartic, and quintic
splinesurfacesreconstructedfrom Igeamodelareshown in
Fig. 11(b). It canbeseenthat, to reachthesameroot mean
squareerror, splines with higher-degree will take fewer
iteration steps.For example, cubic, quartic, and quintic
spline surfacestake 8, 7, and 6 iterations to satisfy the
requirementof the sameroot meansquareerror 0:042%,
respectively (seeTable2).

6 COMPARISON AND CONCLUSION

In this paper, we have articulateda surfacereconstruction
schemefor �tting genus-0closed surfacesbasedon the
sphericalgeneralizationof Delaunaycon�gurationB-spline
(DCB-spline).Thereconstructedgenus-0closedsplinesur-
faceis smooth,Ck continuouseverywhere,andhasanalytic
representation.Furthermore,thecontinuity is naturallypre-
served without enforcingany additionalconstraints.

Comparison with previous DCB-splines. In compari-
sonwith our previouswork [31], thecurrentframework has
threesigni�cant improvements:1) To de�ne the spherical
counterpartof planar DCB-splinesin [31], we generalize
the de�nition of Delaunaycon�gurations from planar to
sphericaldomain. We also articulatean ef�cient method
for sphericalDelaunaycon�guration computationto make
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thissplineformulationmoreusefulin practicalapplications;
2) In [31], to reconstructa closedgenus-0surface,spline
patchesde�ned over planar disks are stitched together
by C0 blending functions, hencethe �nal representation
hasonly C0 continuity acrossthe patches'boundaries.In
this paper, thereconstructeddegree-k sphericalDCB-spline
surfaces are Ck� 1 continuous across the entire domain
without any segmentationandstitchingprocess,high-order
continuity is obtainedelegantly; 3) In [31], we usethe k-
meanclustermethodto insert only one new knot in each
�tting iteration. We now generateknots by minimizing a
CVT energy function with adaptive density functions. A
larger set of knots are simultaneouslyinsertedto regions
with sharpgeometricfeaturesor large �tting errors.The
�tting ef�ciency hasthereforegreatly improved.

Comparison with DMS-splines. Degree-k spline sur-
facestypically have continuity of order k � 1; hencetheir
(k � 1)-th order derivativeswill have discontinuitiesalong
the so called “knot lines”, i.e., line segmentsbetweentwo
knots used for spline reconstruction.In case of DMS-
splines,a “cloud” of auxiliary knots with size of k are
associatedwith eachoriginal knot in orderto reconstructa
degree-k splinesurface.Sincetheknot linesareintensively
distributednearedgesof thedomaintriangularmesh(from
the triangulation of original knots), the mean curvature
distributions of the surface along the curved triangular
boundaries(correspondingto the edges of the domain
triangulation)becomemuch worsethanother regions(see
Fig. 10(a) in [27] and Fig. 9(b) in [25]). To generatea
visually-smoothhigh-quality surface,post-processingpro-
cedures[25], [27] arenecessary. Unfortunately, the fairing
processunavoidablyeliminatesome�ne detailsof the�tted
surfaceaswell (seeFig. 9(c-d)).In contrast,sphericalDCB-
splines are free of auxiliary knots, so the “knot lines”
evenly distributeover theentireparametricdomain,andthe
curvaturechangessmoothly. As shown in Fig. 9(e-f), the
degree-5sphericalDCB-splinesurface is visually smooth
with many �ne geometricdetailspreserved.

Limitation and futur e work. One limitation of our
current schemeis that, we only focus on closed genus-
0 surfaces in this paper. It is much more desirable if
our schemecould handle general surfaces with higher
genus.One necessarystep of improving our schemeis
to generalizesphericalmapping for high genusmodels,
and such spherical mapping for models of complicated
topology is theoreticallypossible.According to Riemann
surface theory, a conformal map betweena surface and
thesphereis equivalentto a meromorphicfunction de�ned
on the surface. Intuitively speaking,this map wraps the
surface onto the spherewith several layers while having
branchpoints.The numberof layersandbranchpointsare
solely determinedby the surface topology and Riemann-
Hurwitz theorem.Different layers can be consideredas
different sphericaldomains,sharingat most two common
points betweeneach other. Upon such parameterization,
Ck� 1 continuoussurfacescould thereforebe reconstructed
everywhereexcept at these2g+ 2 branchpoints (here g
is the genus number). We plan to explore its effective

computationin surface�tting procedures.
Although we only focus our researchendeavors on

surface�tting in this paper, potentialapplicationsof spher-
ical splines are much broaderand not limited to shape
modelingandgraphics.In geo-physicalapplications,high-
order splines with data interpolation are often desirable.
We plan to further re�ne our algorithm by integrating an
effective interpolationconstraintand apply it in geology,
geography, andgeo-physicstasks.
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