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Spherical DCB-spline Surfaces with
Hierarchical and Adaptive Knot Insertion

Juan Cao, Xin Li, Zhonggui Chen, and Hong Qin

Abstract —This paper develops a novel surface tting scheme for automatically reconstructing a genus-0 object into a continuous
parametric spline surface. A key contribution for making such a tting method both practical and accurate is our spherical
generalization of the Delaunay con gur ation B-spline (DCB-spline), a new non-tensor-product spline. In this framework, we
ef ciently compute Delaunay con gur ations on sphere by the union of two planar Delaunay con gur ations. Also, we develop
a hierarchical and adaptive method that progressively improves the tting quality by new knot-insertion strategies guided by
surface geometry and tting error. Within our framework, a genus-0 model can be converted to a single spherical spline
representation whose root mean square error is tightly bounded within a user-speci ed tolerance. The reconstructed continuous
representation has many attractive properties such as global smoothness and no auxiliary knots. We conduct several experiments
to demonstrate the ef cacy of our new approach for reverse engineering and shape modeling.

Index Terms —Delaunay Con gur ations, Spherical Splines, Knot Placement, Knot Insertion, Non-tensor-product B-splines.
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1 INTRODUCTION

THE problem of corverting dense point samplesor
piecavise meshesinto compactand high-order con-
tinuousrepresentationfrequently arisesin a large variety
of applicationan ComputerAided Design(CAD), medical
imaging,visualization reverseengineeringetc. Continuous
representationsan facilitate tasks such as shapeinter-
rogation, sggmentation,classi cation, and surface quality
analysis/controlin principle, continuoussurfacescan be
representedand built using three general cateyories of
methods:implicit surfaces,subdvision surfaces,and para-
metric spline surfaces.

Among these three categories, parametric spline sur
faceshave beenfavored in mary applications,and such
method enablesmary downstreamproceduresincluding
free-form deformation, nite elementanalysis.For exam-
ple, comparedvith subdvision surfaceswhich keepglobal
smoothnesswvithout cutting and stitching, but usually do
not have analytic expressions parametricsurfacesadmit
efcient closed-formevaluation and compactrepresenta-
tion. Comparedwith implicit surfaces whose derivative
evaluations(e.g.,tangeng, curvature,or otherhigherorder
guantities)may needextensie discretizatiorandnumerical
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approximationsparametricsurfacesare simpler and more
efcient to design,control, evaluate,andrender

1.1 Spherical Spline Surface Modeling

A large number of solid modelsin our daily life have
genus-Oclosedsurfacesas their boundarieslt is therefore
imperative to develop an effective way to model genus-0
surfacesusing parametricsplineswith global smoothness.

Closed genus-0 spline surfaces can be constructed
throughmary approachesThe commonly-usecarametric
surface patchessuch as B-splinesrequire domainsto be
simpleplanarregionssuchasrectanglesHence,a straight-
forward constructve methodis by partitioningthe original
domaininto topologicaldisks and composingindividually
constructedsurface patchesThe partitioning of the model
into local chartsand stitching of adjacentpatchesogether
usuallyrequireextensve userinterventionandcould be la-
bor intensie. Enforcinghigh-ordercontinuity alongcutting
boundaryis alsoa challengingproblem.

To avoid suchtediouscutting and gluing, constructing
a spline surfaceglobally over one piecedomainis a more
desirableapproach Generalspline surfacescan be de ned
on manifoldsthat have non-disktopology Many methods
and function spaces(see surweys in [1] Chapter9.7 and
[2]) have beenusedsuccessfullyin copingwith data- tting
and reconstructionproblemson surfaces, such as radial
basisfunctions[3], multi-resolutionmethods[4], trivariate
methods|[5], sphericalsplines [6], polycube splines[7]
and manifold splines[8]. Spline surfacessuch as DMS-
splines, T-splines,and polycube splinesde ned over dis-
cretemeshesisuallyneedto puncha smallnumberof holes
on the domainbeforebuilding the globalaf ne mapping.It
unavoidably leadsto somediscontinuitieson the de nition
domain, and hencethe constructedspline surfaceshave
singularities where additional geometric patchingto x
suchproblemsis necessary
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To avoid both partitioningdiscontinuityandsingularities,
the most natural parametricdomain for closed genus-0
surfaceds sphereUponsphericadomainsglobally contin-
uousparameterizationwithout cutting/stitchingnor singu-
larity pointscanbe computed Onecanobtainanautomatic
splinereconstructiorschemeand a globally CX-continuous
representationThis paperstudiesthe constructionof such
a naturalspline surfaceon the sphericaldomain.

1.2 Related Work

Sphericalsplinesand their applicationssuchas datainter
polationandapproximationhave beenstudiedby a number
of researcherdrom viewpoints of CAGD and physical
simulationapplications[6] in recentdecadesComprehen-
sive works on sphericalsplinesand their interpolationand
approximationhave beensurneyed or discussedn papers
suchas [6], [9], [10]. In fact, most existing splinescan
be generalizedto sphericaldomainand will have similar
propertieswith their planar counterparts.However, they
may also inherit dravbacksfrom the planar case.In the
followings, we discussa few most-widelyusedsplines.

Tensorproduct splines and radial basis functions.
In [4], tensorproductpolynomialsplinesandtrigonometric
splineswere proposedor tting functions/dataon sphere,
based on multi-resolution methods. Buss and Fillmore
de ned barycentric combinationsof spherical points as
least-squareminimizationsof weightedgeodesidistance,
which provide direct generalizatiorof planarsplinecurves
to sphericalones[9]. Gregory investigatedadaptve ap-
proximationto scattereddatagiven over the surfaceof the
unit sphereby radial basisfunctions[3]. For sphericaldata
interpolation/approximationtensor productsof univariate
splines are not good choices, since data locations are
usuallynot equallyspacedover a regular grid. Radialbasis
functions are not good candidateseither, since they are
more suitablefor rotationally symmetricdatavalues[11].

Bernstein-Bézier patches.Alfeld etal. [12] presented
naturalway to de ne barycentriccoordinateson spherical
trianglesby omitting the usualrequirementof partition of
unity. Basedon the aforementioneavork, thehomogeneous
spherical Bernstein-Bzier (SBB) [12], [13] and spherical
simplex splines[14] were proposed,which are spherical
analoguesof Bernstein-Ezier polynomials and simplex
splines, respectiely. SBB polynomials are popular and
have beenwidely studied[11], [15]. However, since the
functional space spannedby Bernstein-Ezier elements
highly dependson domain tessellationsthe represented
surfaceis uniquelyde ned subjectto certaindomaintessel-
lation. The challengeto memge piecavise SBB polynomials
with higherordercontinuity is anotherdisadwantageof this
approach.

Triangular B-splines. Triangular B-spline (or DMS-
spline) is anotherpowerful and well-known scheme[16],
[17] basedon simplex splines[18]. It has been widely
studiedand appliedto applicationssuchas scatteredunc-
tional data tting, modeling, and visualization[19], [20],
[21], [22], [23]. Becauseof the supremeability of DMS-
spline,its sphericalanalogue— scalarsphericaltriangular

B-spline, continuesto attract researchersinterest. Scalar
spherical DMS-spline inherit mary propertiesfrom their

planar counterpart,such as the capability of represent-
ing ary piecavise smooth surfaces of Ck 1 continuity
by degreek splines and including SBB polynomials as
a special case.It has beenappliedto data tting appli-

cations[24], [25]. However, sphericaltriangular B-spline
also inherits dravbacks from its planar counterpart:for

ary given setof knots,one hasto explicitly addthe “knot

cloud” (i.e., auxiliary knots) in advancein orderto form

a knot sequencefor all the basis function construction.
The auxiliary knot placementis less-intuitve and labor

intensive. So far it is still not clear how theseauxiliary

knots could affect the spline basisand the nal surface
in an intuitive and quantitatve way. Additionally, surface
constructedy DMS-splinesmay not be asvisually smooth
dueto the“knot line” phenomenof26]: the curvaturealong
the imagesof the line betweentwo knotsin the parametric
domain is larger than other regions, and a post fairing

processs urgently needed?25], [27].

1.3 Motiv ation and Contrib ution

In order to reconstructa useful genus-Oclosed surface
from data,a visually pleasanteverywhereCX, andanalytic
surfacerepresentatiois strongly desired.Recently a new
bivariatesimplex splineschemebasedon Delaunaycon g-
uration hasbeenintroducedinto the geometriccomputing
community by Neamtu [28], [29]. The simplex splines
basedon Delaunaycon gurations(we call them Delaunay
con guration B-splines or DCB-splines for brevity) are
judgedto be the most corvincing multivariate generaliza-
tion of univariate B-splines[30], and planar DCB-splines
have been used in the application of data reconstruc-
tion [31] [32]. DCB-splineshave mary attractve theoretic
andcomputationapropertiessuchasoptimal smoothness
and polynomial reproducibility, and free from auxiliary
knots, thereforeit is ideal for the tting purpose.

Since spherical splines have mary important applica-
tions, it is importantto develop the theory of DCB-splines
on the sphericaldomain,and designuseful algorithmsfor
their computatiorandapplicationsIn this paperwe further
extend the conceptof Delaunaycon guration to sphere,
formulate a sphericalanalogueof DCB-spline,and useit
to automaticallyreconstructgenus-Oclosedsurfaces.The
speci ¢ contributions of this work include:

1. We constructthe Delaunaycon gurationsdirectly over
the sphere and develop an effective computational
method.A direct way to calculatesphericalDelaunay
con gurationsis to compute3D higherorder Voronoi
diagram As aneffective alternatve, we obtainspherical
Delaunaycon gurations by merging togethertwo sets
of planar Delaunaycon gurations, while signi cantly
reducingits computationacomplexity.

2. As our experimentsdemonstratejf we constructthe
DCB-spline using degreek basis functions and there
are no degenerateknots, the tted surfaceis CK 1
continuouseverywhere Thevisually-pleasansurfaceis
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representedvithout any patchingandstitching,andthe
continuity is naturally presered without any additional
constraintsThe tting procesds adaptve and capable
of satisfyingary userspeci ed error tolerance.

3. We proposean automaticand effective surfacere ning
algorithm,in which theknotinsertionis adaptvely con-
trolled by surfacegeometryand tting errordistribution
in a hierarchicalfashion.In the initial step,knots are
distributedaccordingto the curvednesof original data.
In later iteration step, an appropriatenumberof new
knotsareaddedadaptvely accordingto the distribution
of tting error.

The remainderof this paperis organizedas follows: in
Section2, we extend the de nition of Delaunaycon g-
uration to the sphericalsetting and proposean effective
computationmethod.Section3 describeghe de nition of
sphericalDelaunaycon guration B-splines.In Section4,
we provide the overvien and the technicaldetails of our
new algorithm for the automatic tting schemeWe show
our experimentalresultsin Section5, and concludethis
paperin Section6.

CONFIGURA-

2 SPHERICAL DELAUNAY

TIONS

This section rst discusseshe conceptsand notions of
planarnear/ar type Delaunaycon gurations,sphericalDe-
launay con guration, and their intrinsic relationship,then
proposesan ef cient computationalgorithm for spherical
Delaunaycon gurations.

2.1 Planar and Spherical
tions

Let W be a setof non-deyeneratéknotson planeT, i.e., no

morethanthreeknotsare co-circularor co-linear If Ais a
nite set, we denoteits size by #A. We de ne the near

type Delaunay con guration and the far-type Delaunay
con guration asfollows:

De nition 1: A degreek neartype Delaunaycon gura-
tion of a givensetof knotsW is a pair of setsD = (Dg; D)
suchthat (1) Dg;D; W satisfythat#Dg = 3, #D; = k and
(2) the circumcircleof Dg containsonly D, (i.e., no other
knotsfrom W) in its interior .

In De nition 1, the subscript“B” and “I” represent
“boundary” and “interior” knots, respectiely, since knots
Dg and D, lie on the boundaryand in the interior of
a circumcircle, respectiely. Similarly, the subscript“E”
standsfor “exterior” knotsin the following de nition.

De nition 2: A degreek far-type Delaunaycon gura-
tion of a givensetof knotsW is apair D¢ = (Dg;Dg) such
thatDg;Dg W, #Dg = 3, #Dg = k andthe circumcircle
of Dg containsonly Dg (i.e., no otherknotsfrom W) in its
exterior.

Two examplesare illustrated in Fig.1(left): a degree-
3 neartype Delaunay con guration Dy = ff 5;6;7g;
f8;9;10gg is shavn in the blue circle, and a degree-3far-
type Delaunaycon guration D; = ff 2;4;10g;f 1;3;5gg is
shawn in the black circumcircle.

Delaunay Con gura-

Fig. 1. Planar near-type and far-type Delaunay con gur a-
tions (left), and spherical Delaunay con gur ations (right).

We denote the families of all neartype and fartype
Delaunaycon gurations of degree k associatedwvith the
setW as Dp(W) and D¢(W), respectiely. The neartype
Delaunay con guration is the ordinary planar Delaunay
con guration.

A spherecan be partitionedinto two disjoint parts by
specifyingand removing a circle on the sphere.To avoid
ambiguity we denotethe part with smaller area as the
interior of the circle on sphere A greatcircle ¢ partitionsa
sphereinto two equal-areaegions M1 and M, eitherone
canbe consideredasthe interior in suchcase.

Then,in completeanalogyto De nition 1, we cande ne
setU of n knots on the sphereS? = fxj kxk = 1;x 2 R%g
andDelaunaycon guration by sphericalgeodesicandcall
this sphericalDelaunaycon guration.

De nition 3: A degreek sphericalDelaunaycon gura-
tion of a given setof knotsU is a pair of setsX = (Xg; X))
suchthat (1) Xg; X, U satisfythat#Xg = 3, #X; = k and
(2) the sphericalgeodesiccircumcircleof Xg containsonly
X (i.e., no otherknotsfrom U) in its interior .

We denotethe family of all spherical Delaunaycon-
gurations of degree k associatedwith the knot set U
on sphereas SD(U). Examplesof spherical Delaunay
con gurations are shovn in Fig.1(right): two degree-
2 spherical Delaunay con gurations ff 1;4;5g;f 2;3gg,
ff 11;12;13g;f 9;10gg and a degree-3sphericalDelaunay
con guration ff 6;7;8g;f9;10;11gg. We den%teunordered
sphericalDelaunaycon gurationsas X = Xg  X;. The set
of all sphericaDelaunaycon gurationsX correspondingo
the sameunorderedDelaunaycon guration X is denoted
as < X >. The family of unorderedspherical Delaunay
con gurationsof the setU on S is denotedas[R].

2.2 Spherical
tion

Since each Delaunaycon guration correspondgo a ver

tex of high-order Voronoi cell, Delaunay con gurations
can be obtainedduring the constructionof the high-order
Voronoi diagrams[33]. Similarly, the sphericalDelaunay
con gurations can be obtainedby computing high-order
Voronoi diagramson sphere. In other words, we can
obtain sphericalDelaunaycon gurationsby computing3-

dimensionalVoronoi diagramson sphere.However, this

computationmethodis very expensve, i.e., computing 3-

dimensionaMoronoi diagramsneedsquadraticcompleity

even for the rst-order case[33], [34], [35]. Here we

proposea simplerand more ef cient methodfor spherical

Delaunay Con guration Computa-
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Delaunaycon guration computationasan extensionto the
sphericaloronoi diagramcomputation36]. In [36], using
two inversions,the sphericalVoronoi diagramof a given
setof pointson a sphereis obtainedby gluing two planar
Voronoi diagramstogether Similar to [36], we choosetwo

specialinversions,and prove that ary sphericalDelauary

con guration is invariate under at least one of the two

choseninversion. Then the Delaunaycon guration set is

obtainedby meming two setsof planarDelaunaycon gura-

tions.Notethat,the sphericaDelaunaytriangulationin [36]

is only a degree-OsphericalDelaunaycon guration, which

is a specialcasediscussedin our paper With spherical
Delaunaytriangulation,one canonly de ne degree-Obasis
functions,which is not enoughfor the purposeof general
spline constructionand surface tting. In this section,we
computegeneralDelaunaycon gurationson spherewhich

enablesus to de ne basisfunctionsof higher degreeson

the sphericaldomain.

We rst introduce an inverse transformationin 3-
dimensionaEuclideanvectorspaceThe Inversionwith the
inversioncenterat point s is de ned by

fsW= s+ s; ®
wherek k is the EuclideanL, norm. For both circles on
sphereandplane,we now usepre x ext andint to represent
theinterior andexterior regionsof circles,respectiely. For
example, extS; standsfor the exterior of sphericalcircle
S on sphere;intP; standsfor the interior of circle P, on
plane.Let inversioncenters be on the unit sphereS? and
S be a sphericalcircle on the unit spherethenf s hasthe
following properties:

(1) fs mapsS? to a plane,which we call the inverse
plane Ts associatedvith the inversioncenters.

3] 8& Szifs(&) =PP Ts.

(3) If s 2intS, thenfs(intSnfsg) = extF..

(4) If s2et, thenfs(intS) = intP..

Fig. 2 shavs an exampleof inversionwith its inversion
centerat point (coloredin red) s = (0;0;1), which maps
unit sphereS? onto plane Tgo.1) : ! f(Xy2) 2 Rjz=
0:59. Meanwhile,it mapsthe sphericalcircle S (decorated
by the blue curve on the sphere)onto the planarcircle P,
(decoratedby the big blue curve) on plane T,g.1). Since
S hass in its interior, f s mapsthe interior of S (colored
as the yellow region on the sphere)to the exterior of P;
(coloredasthe yellow region on the plane).

Given a point set X = ft; ji= 0;z;m 1g S, we
denotetheir imagesunderinversionfs by X5 = f¢(X),
wherefs(tj) 2 Ts. Whenthereis no ambiguity we simply
use the indexing integersto representpoints when their
coordinatesare not involved. For example,a setof points
to;ty;:tm 1 are denotedas f0;1;::;;m 1g. The above
obsenationsimmediatelyleadto following properties.

Property1: A degreek spherical Delaunaycon gura-
tion SD = f Xg; X;g hasthe samecombinationalstructure
as a neartype (fartype) Delaunay con guration Dj =
fX5:X°g (Ds = fX§;X20) if the sphericalcircumcircle
of Xg hasinversioncenters in its exterior (interior).

Fig. 2. Inversion function fs(v). When s = (0;0;1), fs
transfers unit sphere onto plane T,y : 2= 0:5.

We say that two pairs have the “same combinational
structure”if their elementsand ordersare the same:Xg =
Xg and X, = X|s (X| = XES)

Property2: Given a spherical Delaunay con guration
SD = fXg; X g on &, supposethere are two inversion
centerss; and sy, locatingin the interior and exterior of
sphericalcircumcircle of Xg, respectiely, then underthe
inversetransformations s, andfs,, SD will be mappedo
a planarfartype Delaunaycon guration D¢ = fXle;Xélg
oninverseplaneTs, andaneartype Delaunaycon guration
Dn = f X532, X 2g on inverseplaneTs,, respectiely.

Propertyl impliesthat, for a givenknot setU on sphere
&, onepartof SD(U) hasthe samecombinatorialstructure
as the neartype Delaunaycon gurations D,(US), while
the rest part has the samecombinatorialstructureas the
fartype Delaunaycon gurationsD¢(U ). Computingnear
type Delaunaycon gurations has beenwidely studied,so
if we can computefartype Delaunaycon gurations,then
the sphericalDelaunaycon gurations can be obtained.

According to Property2, a fartype Delaunaycon gu-
ration on one inverse plane has the same combinational
structurewith a neartype Delaunaycon guration on an-
otherinverseplaneassociatedvith anappropriaténversion
center Furthermore,for the given knot set U and an
inversioncenters; on spheresupposes;, i= 0;1;::;;9 1
are all the spherical Delaunay con gurations whose cir-
cumcircleincludess; in theirinterior. ThenProperty2 also
impliqsthatif thereis anotheiinversioncenters, satisfying
Sp2 iqzoled&i, thenfor eachfartype Delaunaycon gu-
ration on inverseplaneTs,, thereis a neartype Delaunay
con guration on Ts, correspondinglyln other words, all
fartype Delaunaycon gurationson inverseplaneTs, can
be computedfrom neartype Delaunaycon gurations on
the secondinverseplaneTs,.

Given a knot setU &, let s; = (0;0;1) and s»
besits antipole, say (0;0; 1). Supposesi;s, 2U and
U fs3;5,9 is not degeneratedi.e., no morethan3 knots
are spherically co-linear and no more than 4 knots are
sphericallyco-circular We reducethe computationof De-
launaycon gurationsof pointson a sphereto respectiely
computing Delaunaycon gurations of two setsof points
in R2 and meming identical onesin different Delaunay
con guration sets.The algorithmis asfollows.

The computationatomplexity of Step2 is O(n). In Step
3, since Delaunaycon guration is implied in computing
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Algorithm 1 Computationof degreek sphericalDelaunaycon-
gurations.

Input: knotsetU <.
Output: degreek sphericalDelaunaycon guration setD.
D 0
2: map knot setU by function fs,(v) to planesTs; and get
imagesUs;, i = 1;2
3: compute the degreek neartype Delaunay con gurations
fDrig gf Us,i=12
:D D fD g
: for eachDy, = (XBZ,XSZ) 2 £Dp2g do
if fsz(slg is in the interior of circumcircleof X§Z then
D n

end if
end for
:return D

o NO TR

higherorderVonoroi diagram,we can nish its calculation
in O(nlogn) usingthe methodin [33]. In Step5, no more
than(2k+ 1)n con gurationswill be searchedwhich takes
O(n) to nish. In Step 6, eachoperationtakes O(1) to
nish. The entirealgorithmhasonly O(nlogn) compleity,
much lower than that of direct computationof high-order
Vonoroidiagramin 3D spacewhich is usuallyhigherthan
o(r?) [33].

3 SPHERICAL DELAUNAY CONFIGURATION
B-SPLINES (SPHERICAL DCB-SPLINES)

Sphericalsimplex splinesare sphericalanalogue®f planar
simplex splines.Thesesphericakimplex splinesarelocally-

supportedsmoothfunctionson sphericaldomain.We intro-

duceconceptaandnecessaryotationsof sphericalsimplex

splineshereandreferreaderdo [14], [24] for moredetails.

Givenaknotsetontheunit spherev = ftg;ty; itk 29

& andasplit setw = fti,:ti;;ti,0 V, W formsaspherical
triangle Dtj, ti, ti, on S2. Thenfor pointp 2 <, its spherical
barycentriccoordinate p%; pt; p?) with respecto Dt;ti, ti,

is de ned as:

(% php?) =
de(p;ti,;ti,) . def(tiy;p;ti,) . dettiy;ti,; p)
det(tiy; tiy;ti,) " dei(tio; ti,; tiy) " deltiy; tiy ti,)

(2)

wherewe treat points as vectors,and de{a; b; ¢) indicates
the signedvolume of the tetrahedrorformed by the origin
and a; b;c. Much work [9], [12], [37] hasfocusedon the
de nition and discussionof sphericalbarycentriccoordi-
nates,and we choosethe one (Equation (2)) developed
in [12] becauseof its simplicity as well as its mary
properties shared by its planar counterpart.Unlike the
planar braycentriccoordinateswhen p lies on or within
spherical4 tjti, ti,, we have p°+ pt+ p? 1.

A degreek sphericalsimplex splineassociatedvith knot
setV is recursvely de ned as:

2
a p(pW)M(pjvnftig); p2 S

j=0

M(pjV) = (3)

whenk= 0,V = ftg;ty;tog anddegree-zercimplex spline
is de ned as

clto; ty;t2)(p) .
jdet(to; ty;t2)j
which is the normalized characteristicfunction on the
sphericalhalf opencorvex hull of [tg;t1;t2).

Given a knot set U S, the spherical DCB-spline
associatedvith an unorderedDelaunaycon guration X is
denotedas B,, andde ned as:

M(pjto; t1;t2) =

Be(M= & GogMPiBr) p2S: ()

X2<X> (X )

For sphericalbarycentriccoordinatesthat do not yield
partition of unity, i.e.,

I(p)= & Bglp) 1L
R2[R]

p2 s

in order to guaranteghe partition of unity for spherical
DCB-splines,we normalizeeachbasisin Equation(4) as:
Be(P)
Be(p)= X-2; p2 %
The normalizedbasessatisfy the corvex hull property
Suppose[X] has n elements,we index the unordered
spherical Delaunay con gurations in [X] as X,

0;1;:::;;n 1. Thenthe sphericalDCB-spline surface con-
structedby basesn Equation(5) is de ned as:

()

n 1
F(p)= & Bi(p)c; p2 S (6)

i=0
whereB;(p) is the basisfunctionde ned by %, andc; 2 R®
is its correspondingcontrol point.

4 SURFACE FITTING USING SPHERICAL
DCB-SPLINES

4.1 Problem Statement

Splinesurface tting is afundamentaproblemin computer
graphics,visualization, computeraided design and mary
other application elds. Our goal is to nd a parametric
spherical DCB-spline surface de ned on the unit sphere
S, approximatingan unknovn surface M sampledby a
setof points X = fXxg;X1;:::;Xn 19. In our initial input,
thesesamplepoints are vertices of a genus-Opolygonal
(triangular) mesh M, and we seeka rational parametric
sphericalDCB-surface (de ned in Equation(6)) to t the
input data X , satisfying certain criteria that measurethe
approximationquality. Let F(p) denotethe reconstructed
sphericalDCB-surface,and u; be the parametewvalue on
sphericaldomainassociatedvith vertex x;, thenwe usethe
EuclideandistancebetweerF(u;) andx;, 6 = kx; F(u;)k,
to measurehe distancebetweenthe reconstructedurface
F(S%) andthe original surfaceM, we call g the tting error
of vertex x;.

Thetoleranceof root meansquaretting error(RMSE)is
speci ed by the user The surface tting problemtherefore
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becomeghe minimization of tting error f gg so that the
RMSE s lessthanthe speci ed toleranceLik e most tting
processesye minimize g in the least-squaresense:
n 1 n 1
. o] _ . o 2
ming &= ming kxi F(u)k*:
i=0 i=0

(7)

4.2 Algorithmic Overview

Our goalis to createa sphericalDCB-splinesurfaceF(S?)
that best approximatesM. Like classical univariate B-
splinecurves,thefollowing threefactorstypically in uence
the shapeof spherical DCB-spline surface in the tting
procedurei(1) surface parameterization(2) knot selection
andplacementand(3) controlpointlocations.t is possible
to constructan optimal sphericaDCB-splinesurfacefrom
given scatteredooints by solving a nonlinearoptimization
problemwhenall parametevalues knot positions,andcon-
trol point positionsbecomeunknovn. However, this leads
to a high-ordernonlinearoptimizationproblem(with mary
variables)that can hardly be solved ef ciently . Therefore,
like most existing standardapproacheswe take a more
efcient divide-and-conquertting strategy, following the
three-stageprocedure:parameterizationknot placement,
and leastsquaresminimization.

GivenasurfaceM, we rst computeits sphericalparam-
eterization;j : ! M. Ideally, a parameterizatioshould
have neitherangulardistortionnor areadistortion. Suchan
ideal parameterizatiois calledanisometry Unfortunately
given an arbitrary surface, due to the intrinsic geometry
obstacle,its isometry to a sphereS? rarely exists. We
therefore seek a parameterizationthat minimizes angle
and areadistortion for subsequensphericalspline tting.
Conformal maps presere the shapeangle of the surface
over the parametricdomain, therefore, it is potentially
importantfor high-quality tting in the subsequensteps.
However, conformal maps could introduce relatively big
areadistortion (for example, a long branchregion on M
may shrink to a small parametricregion on S?). This is
undesirabldor spline tting, becausen theseregionswith
large areadistortion,we could have far fewer knotsfor ge-
ometricdetailson thelong branch.Thusa parameterization
that effectively minimizes both angle and areadistortions
is mostdesirable.

Upon parameterizationywe placeknots on the spherical
domainandconstructsphericaDCB-splinebasisfunctions.
For a givenknot sequencen unit spherewe canconstruct
basisfunctions and associateeachof themwith a control
point, thenwe optimize control point positionsby solving
a linear least-squareproblem.

Finally, sinceit is usuallyunknonn in advancehow mary
knots and control points are requiredfor a speci ed accu-
ragy, we use a progressie procedureto adaptvely adjust
thenumberof knotsandcontrolpoints.In generalthis knot
adjustmentprocesscan proceedin either of the following
two ways: (1) start with a minimal or a smaller number
of knotsand iteratively increasethe numberof knotsuntil
satisfyingthe error bound;or (2) startwith a maximal or
a larger numberof knotsanditeratively reducethe number

of knots in order to satisfy the error bound. The second
way is usually more time-consumingespeciallywhen the
initial knots are not well determined[38]. Therefore,we
adjust knots using the rst stratgy. If the current tting
error g doesnot satisfythe pre-assignetblerancethenwe
addmoreknotsandcreatemorebasedo re ne the surface
tting. We also exploit a heuristicmethodto optimize the
positionsof new knots,sothatin eachre nementa number
of new knotscanbe well distributedandadaptedo surface
geometryand tting error.

The surface tting processis progressie. The input of
eachre nementis a closedgenus-OsurfaceM sampledby
fx;g; the outputis the sphericalDCB-spline with control
pointsand g. We have the following tting pipeline:

1) Specify a toleranceof the root meansquareof tting
error (RMSE) e> 0;

2) Generatehe sphericalparameterizationf M;
3) Initialize knot positions;
4) ComputeDelaunaycon gurationsby Algorithm 1 and

constructbasisfunctions(Equation(5)); thenassociate
eachbasisfunction with a control point.

5) Optimize control point positionsby solving the linear
least-squareproblem:mina L ;' €?.

6) If the current tting RMSE is lessthan e, then STOR,
otherwisejnsertnew knotson parametriaegionswhere
tting errorsare big, andgo backto Step3).

4.3 Spherical Parameterization

The sphericalparameterizatiornas beenstudiedas a key
enabling technology in mary geometric modeling and
processingtasks such as meshing, morphing, and shape
analysis.Sphericalparameterizatioralgorithmsshall min-
imize angle distortions [39], [40], area distortions [41],
or a tradeof betweenthesetwo indicators[42], [43]. For
our spline tting purposeminimizing angledistortionand
areadistortion togetheris most desirable.We discussour
sphericalmappingdistortion metric in Section4.3.1 and
briey addresshow to solwe it in Section4.3.2.

4.3.1 Distortion of Spherical Mapping

A sphericalmappingj is a function from the unit sphere
domainS? to agenus-CclosedsurfaceM  R3,j 1?1 M.

We approximateM andS? usingtriangularmesheswith the
sameconnectity of M, denotedas M = fT ;X g;S* =

set,andX = fxjg;U = fujg arevertex sets.We consider
the inverseparameterizatiory := j 1 to be linear within
eachtriangle. Thenthe mappingy is uniquely determined
by its valueson meshvertices,and for eachvertex v; we
want to solve its image u; on the sphericaldomain. We
denotethe positionof vertex x; on M as(x}; x2;x%), andits
correspondingparameteron & asu;j = (ul;u?;ud), where
ui hasthe unit L, norm:jjuijj? = 1.

The angledistortion and areadistortion of the mapping
canbe measuredasfollows:

t, tr

E+ t_l; (8)

Ea = Eange =
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1
Ea = Earea= tilo+ ——;

; 9

it ©)
wheret 1 andt, arethemaximalandminimal singularvalue
of the Jacobiarde ned on eachtriangleunderj . Following
[44] [45], we discretizethe enegy on eachtriangle Te (and

Tm =y (Tg)) by

cotxjaj?+ cothjbj?+ cotzjcj?

E, =
a 2aredTy) ’

(10)

where x; h; z are angleson the original triangle Ty and
a; b; c are correspondingppositeedgesof triangle Te on
sphere respectiely, and

_ aredTgy) . aredTv) .

AT aredTy) aredTy)

We always normalize M so that its area equals to
area(S?) = 4p. Thenin the optimal case,an isometryhas

bothE; = 2 andEx = 2.
We wantto minimize the following enegy

E= & areaTw)Ea(Tu) (Ea(Tw))';
Tm2T

(11)

(12)

where/ is the weight balancingthe angleand areadistor
tion. SinceEa 2, bigger/ indicateslarger emphasison
area-preservingand we will get a more uniform mapping
by sacri cing conformality

4.3.2 Optimizing Spherical Mapping Distortion

To minimize the piecavise honcorvex enegy in Equation
(12), we usea coarse-to- neoptimizationto alleviate the

local optima problem. Like [45] and [42], we also use

progressie mesh[46] to geta uniformly-sampledcoarsest

mesh,andthenminimize the distortionupon progressiely
re ned resolutions.The algorithmis asfollows.

1. Onthe coarsestevel, computean initial mappingj :
! M using[43] (becauseof its ef ciency).

2. Minimize the sphericalparameterizatiowlistortionen-
ergy in Equation(12).

3. Progresso a ner level, the newly-split verticesare
optimizedwithin its one-ringregion on the sphereby
minimizing distortionenegy in Equation(12).

The optimization performed over a spherical triangle
meshcan be formulatedas:
min (13)
whereN is the numberof vertices,u; is a point on the unit
spheregparametricdomain.This is a non-linearoptimization
subjectto quadraticconstraints.We develop an ef cient
optimizer for this problemon triangularmesheslt makes
good use of the dervative on every sphericalpoint, and
performcurve line searchfor eachvertex by examiningthe
function value and gradienton that point.
Iteratively, we pick a vertex and optimize it on
the sphere when xing all other points. In other
words, for a point u = u;, we shall minimize f(u) =

We evaluatethe gradientof f(u) at this pointu, denotedas

(a) bunny  (b) sphere  (c) sphere  (d) sphere
(front) (back) (mesh)
© EZ"  MET (@E7TY i ET

(i) Eq [42] () Eq [42]

Y

(n) Eé =02

(k) Ex [42] () E4 [42]

[

(0) E%:O.z (p) Ej,:ﬂ.z

(m) Eé:ol

Fig. 3. Distortion of spherical parameterization under dif-
ferent weights. (a-h) Bunny parameterization: (b,c) The front
and back of the bunny mapping (/ = 0:5) on the sphere, (d)
The mesh on sphere; (e,f) Angle distortion (red: E; 4, blue:
Es = 2, distortion values in between are evenly distributed
from blue to red) of the mappings under /| = 0:5and | = 5;
(g,h) Area distortion (red: Ea 3, blue: Ea = 2) under different
| s. (i-p) Gargoyle parameterization: (i,j) Front and back views
of the color-encoded angle distortion of mapping computed
using [42], (k,) area distortion color-encoded; (m-p) the
corresponding models computed using our method | = 0:2,
from same views directions. All the color-coding in (i-p) are
consistent, (for angle distortion, red: E; 6, blue: E5 = 2,
for area distortion, red: Ep 3, blue: Ex = 2). More statistical
results can be found in Table 1.

Nf(u), and checkits magnitudeon the tangentplane: let
gu = Nf(u)Tu, then r(u) = jjNf(u)jj 1 FN%
Note that, r (u) is the magnitudeof Nf(u) projectedonto

u's tangentplane. Therefore,during iterations,eachtime
we pick a point having largestsuchmagnitudeto optimize:

Now on u, alongits negative gradientdirection Nf(u),
we performa curve line searchon the greatcircle, denoted
as cg, obtainedby the intersectionof the unit sphereand
the hyperplanepassingthroughthe origin, u, and  Nf(u).
Furthermore,we can keep the curve line searchwithin
the union of u's one ring spherical triangles to avoid
unnecessarilysearchingregion that will cause ip-o ver.
Denotethe union of all one-ringsphericalarcsas c;, we
start the searchfrom the intersectionpoint of cg and ¢,
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TABLE 1
Spherical parameterization under different weights. Here,
maxand avgindicate the maximal energy on triangle face
and the average energy (weighted by the face area on M);
Ea and Ea are angle and area distortions, respectively.

Models | Methods| max, | avgs, | max, | ave,
Igea [42] 1195 | 2.06 | 3.93 | 2.019

[ =02 | 11.29 | 2.004 | 55.7 2.14

I =1 11.40 | 2.06 | 3.85 | 2.019

I =5 13.58 | 2.06 3.16 | 2.012

Bunry [42] 19.12 | 2.76 | 542 | 2.11
| =02 | 15.60 | 2.62 6.16 2.34

| =10 | 38.66 | 2.83 | 4.28 | 2.08

Gagoyle [42] 1695 | 289 | 896 | 214
| =02 | 1655 | 272 | 37.67 | 2.36

along cg towardsu, and iteratvely divide the steplength
by 2 beforenormalization.

We demonstratesome mappingresultscomputedusing
our algorithm.Fig. 3 shows the sphericalparameterization
computedon the Bunry and Gaigoyle model. (a-h) shav
the mappingof bunry. (a-d) are the mapping computed
under/ = 0:5; andthe color-codingvisualizesthe areadis-
tortion, wherered indicatesE; 4, blue indicatesE, = 2
(note that 2 is the minimal value), and distortion values
in betweenare evenly distributed from blue to red. (e-h)
shav that undertwo different | s, two parameterizations
leadto differentangledistortionandareadistortion(in (g,h)
red: En 3, blue: Ea = 2). (i-p) illustrate the spherical
parameterizatiorof gargoyle model, with a side by side
comparisonbetween[42] and our method. Note that the
algorithmintroducedin [42] minimizesthe L? stretch[47]
which nicely presereshboth angleandareadistortions.We
shav that using different | we can exibly control the
mappingbehaior. For example,in (e-h), we increasel to
improve the area-preservingroperty of the mapping;on
the other hand,in Fig. 3(m-p) we set/ = 0:2 to improve
the mappingconformality

Table 1 shavs more statistical results of the spherical
mapping.Under different weights, parameterizationbave
differentangleandareadistortions.Large! emphasizethe
area-preservinge.g., seethe rows where/ = 5;10) while
smalll betterkeepsconformality(e.g.,seethe rows where
I = 0:2). All modelsin this tablearedataprovidedby [42],
wherethe Bunny modelhas69:6k triangles,lgeahas100k
triangles,and Gamgoyle has200k triangles.

Our optimization is very efcient: when | = 1, 10k
iterationsusuallytake only 0:5 secondbigger/ makesthe
derivative computationslightly slower; e.g.,when/ = 10,
10k iterationstakes about0:7 second).Note that in each
iterationwe move onevertex alongits negative gradientto
alocally optimal positionwithin its one-ringneighborhood.

4.4 Adaptive Knot Insertion

Knot sequencds importantin recovering the underlying
smooth curve and surface from discretely-samplediata
points for ary spline-centricrepresentationln particular

Fig. 4. The Bunny model (a) with 35k vertices, its param-
eterization (b), and initial knot placement. (c) Color-coded
curvedness and 100 initial knots placed following curvedness
distribution.

discretedata points acquiredfrom a physical object have
considerablegeometriccomplexity, and the reconstructed
shape may have signi cant difference from the actual
physicalsurfaceif the knotsare not reasonablydistributed
accordingto the geometric shapevariation. Despite the
fact that the quality of the reconstructedsurface depends
heavily on different stratgies for knot placement,there
is no effective and intuitive way to place knots at their
best possible positions accordingto the minimization of
RMSE. In this section,we introduce a heuristic method
to optimize knot locationsand adjustthe numberof knots
adaptvely in a hierarchicalfashion:we startwith a small
numberof knots, and then add more knots adaptvely in
eachsubsequenttting iteration so that the reconstructed
surfaceapproximatescattereddatasamplesprogressiely.

In Section4.4.1, we rst introduce a geometricmea-
surementand then de ne an enegy function. Through
minimizing such enegy function, we obtain the knotsin
the initial tting stepaccordingto the surface geometry
After the initial tting step, tting errorswill betterguide
the placementof new knots. In Section4.4.2, a similar
enegy function is de ned, and by minimizing this new
enegy function, we can insertknotsin a greedyway: in
each tting step,more knotswill be addedto the regions
with larger tting errors.In Section4.4.3,the adaptve knot
placementalgorithm is describedand parameterausedin
the enegy functionsare explained.

4.4.1 Placement for Initial Knots

The numberof knotsin someregionsof the parametriado-
mainis closelyrelatedto the numberof control pointsover
the correspondingsurfaceregions. In principle, more con-
trol points are necessaryn orderto model sharpfeatures,
ridges, valleys, or prongs[48]. That means,more knots
shall be placedin the parametricdomaincorrespondingo
featureregions. Hence,we rst introducea measurement
of surfacegeometryto identify regionswith features.
Surface geometry measurement. Curvatureis the most
importantintrinsic quantityto differentiallycharacterize¢he
local shapeof curves and surfaces.We use the sum of
absoluteprincipal curvaturegk;j + jkpj asthe measurement
of how much a surface bends(a.k.a. the “cur vedness)
at ary point, and we denoteit as k. The calculation of
the principal curvature on discreterepresentatiorsuch as
triangular meshesis not trivial. One popular approachis
to rst estimatecurvature tensor from which principal
cunaturescan be extracted[49], [50], [51]. In this paper
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we computethe curvaturetensoron eachmeshvertex x;
using the method proposedin [49]. Then the principal
cunaturesandthe local “curvedness’tanbe obtained.We
usek; to denotethe curvednessof vertex x;. In Fig. 4(c),
the normalizedcurvednessof eachvertex is color-coded
andvisualizedon the parametricdomain.As showvn in the
color-bar, the more curved regions are in white and less
curved regionsarein orange.

Supposave have K knotsto be placedover the spherical
domainin this initial stepanddenotethemasTO = ft,jk =
0;1;:::K 1g. Since curvednessis a measuremenbf the
geometryof inputmeshwe hopethatmoreknotsareplaced
in regionswith larger curvednessWe de ne a curvedness
function k(t);t 2 S* on the parametricdomainas follows:
k(t) = k; if t is the parametricpoint correspondingto
vertex Xj; otherwise,k(t) in a triangle formed by three
parametricpoints is de ned by linear interpolationof its
valuesat the verticesof the triangle. Assumeeachknot ty
coversa subrgion W, S, we computethe accumulated
curvednessn W's correspondingsurface patch Xy by:

Z

ka(t)ds;
t2W,

&= (14)
where s is the area elementon sphereand a > 0 is
a control parameterWe shall decomposethe parametric
domaininto subragyionsf Wijk = 0;1;:::K 1g with similar
accumulateccurvednessg, and naturally chooseits mass
centerasa knot. Notice that, a large a will leadto a ner
decompositiorof the region with large curvedness.

However, there are a numberof ways to partition the
parametricdomain, such that each sub-patchhas evenly
accumulatecturvednessg,, evaluatedby the discretever
sionof Equation(14). It is desirablef eachsub-reyion can
be asroundas possible,suchthat a knot t, canbe a good
representatie of this sub-rgion W. Thereforewe measure
the distancedetweenty andotherpointsin W, andre ne
Equation(14) to:

g = k&(t)kt tik’ds; (15)
12W
from which an enegy functionis de ned as:

k=1

The knot locationsftyjk = 0;1;:::K 1g, as well as the
decompositiorf Wijk = 0;1;:::K 1g, can be obtainedby
minimizing the enegy function formulated in Equation
(16). Later, we will shav the methodon how to minimize
the enegy function of Equation(16).

Fig. 4(c) shavs that 100 initial knots are placed by
minimizing the enepgy function of Equation (16), where
a is setto 4. We can seethat knots tend to concentrate
in the regions with large curvedness.Given such knots
ftyk= 0;1;:::K 19, thesphericaDelaunaycon gurations
can be obtainedby Algorithm 1. Thenthe basisfunctions
canbe constructedmmediately followed by the computa-
tion of associatedontrol pointsto be optimizedvia solving
the linear leastsquaregproblemde ned in Equation(7).

Fig. 5(a,b)illustratethe spline surfaceand control points
constructedrom theinitial knots,respectiely. Meanwhile,
the tting error at eachvertex of the meshsurfacecanbe
evaluated.We denotethe maximumand minimum values
of g;i = 1, as enax and emin, respectiely, and
normalizethe tting error at vertex x; by g = anem'"m
Fig. 5(c) visualizesg of the reconstructedsurface after
the initial tting. The blue and white colors indicate the
minimum and maximum of e, respectiely. The color
coded tting errors,as well as the initial knots, are also
shawn in the parametricdomainin Fig. 5(e).

4.4.2 Knot Placement in the Adaptive Fitting Process

After theinitial tting processthe tting errorswill better
guide the placementof new knots. Obviously, on the
parametricdomain,regionshaving larger tting errorswill

need more knots during the re nement process.Without
loss of generality let us assumehat K knots T = ft,jk =

0;:::K 1g aregoingto be placedover the domainin the
jt" adaptve tting iteration(herej 1, andif j= 0, it is
theinitial iteration/process)A tting error function e(t) in
the jt" iterationstepcanbe de ned in the samefashionas
k(t): if t is the parametepoint correspondindo vertex x;,
e(t) = g, where tting errorg is obtainedromthe(j 1)t
tting iteration; otherwise, g(t) in a triangle formed by
three parametricpoints is de ned by linear interpolation
of its valuesat the verticesof the triangle. Similar to the
placemenfor initial knots,we replacethe curvednessk(t)

in theenegy functionof Equation(16) with the tting error
e(t) and minimize function

K 1Z

Fo(tikWek=0;1;:5K 1)= g e?(t)kt  tykds:
k=0

a7)

By minimizing enegy in Equation(17), we caninsertnew
knots adaptvely subjectto the tting error distribution.

In Fig. 5(f), 100 new knots are insertedafter the initial
tting stepby minimizing enegy functionof Equation(17).
It canbe seenthatthe newly-addedknots are concentrated
at the regions with large tting errors. More knots are
insertedprogressiely until the tting RMSE satis es the
given threshold.

4.4.3 Energy Minimization and Parameter Selection

It may be notedthat, the enegy functionsin Equation(16)
and Equation (17) also occur during calculationof cen-
troidal Voronoi tessellation{CVT) constrainedn sphere,
which was introducedin [52]. Both enegy functionsin
Equation (16) and Equation (17) are the so-calledCVT
enegy functions

K 1Z

F(tikWek=0;1;:5K 1)= g r(tkt tk3ds:
k=0

(18)

with densityfunction r (t) being k2(t) and€?(t), respec-
tively. Hence, Equation (16) and Equation (17) can be
minimized in the sameway as Equation(18). A widely-
usedmethodfor minimizing Equation(18) is an iterative
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methodproposedy Lloyd [53]. By incorporatinga quasi-
Newton methodto computecentroidaMoronoitessellations
proposedn [54], Yanetal. [55] introduceda moreef cient
algorithmto minimizethe enegy functionof Equation(18).
In this paper we adoptthe optimizationschemen [55] to
computethe tessellatiorandthe projectionsof centroidsto
the sphere.For more detailsaboutthe theory of CVT and
its computationaimethod,pleasereferto [52], [54], [55].

It has beenshonn that a minimizer of Equation (18)
is a specialtessellationwhere W is the Voronoi region,
and eachknot ty is the projection of the centroid of W
to the sphere Accordingto Gershaos conjecturg56], upon
corvergence,the enegy de ned in Equation(18) evenly
distributesin eachpatch.Theknotsareequallydistantfrom
eachother as much as possible,and the knot distribution
faithfully respectsertaindensityfunctions,i.e., curvedness
functionor tting errorfunctionsin this paperHence knots
obtainedby minimizing Equations(16) and (17) are very
suitablefor the applicationof surface tting.

As discusseabove, it is almostimpossibleto determine
the right number of knots in either initial step or later
adaptve tting stepssuchthatthereconstructedurfacecan
reachthe pre-assigneeérrortolerance Fewer knotsinserted
in eachstepmeansmore iteration stepsand slower tting
processeswhile more newly-inserted knots in each step
meansfewer stepsbut canleadto a larger numberof total
knotsattheendof surface tting. Thereforewe empirically
place 100 knots during the initialization stage and add
100 more knots during eachre nement. As mentioned,
larger a will force knotsto be more concentratedn the
region with large density In all of our experimentswe use
parametela = 4 in Equations(16) and(17), which usually
affordsthe tting procesgo reachthetolerancewith agood
balancebetweenthe numberof re nement stepsand the
numberof knots. The algorithmfor adaptive knot insertion
is illustratedin Algorithm 2.

Note that, in the later adaptve tting steps,already-
existedknotsareall x ed,andthe new knotsareplacedin
regionswith large tting errors.Namely in the ji" tting
iteration, we constructa spline surface on the knot set

o T' (seeStep14 of Algorithm 2). This may not be the
beststratgy for the placementof the entire set of knots.
Nonetheless(l) it usuallyleadsto the monotonicdecrease
of the tting error, which is crucial to the corvergenceof
our re nementstratgy; and(2) for eachnew insertion,we
only needto minimize Equation(17) subjectto the newly-
addedknots locally, and it is much more efcient than
runningfunction minimizationon Equation(17) againwith
respectto all the currently-available (existing plus new)
knotsfor eachiteration.

5 EXPERIMENTAL RESULTS

This sectionpresentshe experimentakesultsof our surface
tting framework. We performall our tting experiments
on a laptop PC with a 2.2GHz Intel Duo-Core processor
and 2GB memory We apply our surface tting algorithm
to several discretemodels.All thesedatasetsareuniformly

10

Algorithm 2 Adaptive knot placementalgorithm for degreek
sphericalDCB-splinesurface tting.
Input: meshM = fxjg with parameterizatiormesh P =
f uig, thresholdof root meansquaretting error e.
Output: degreek sphericalDCB-splinesurface.
1. j Of tting iterationnumbeg
2: densityfunctionr (t) O

3: K 100 fthe numberof knotsaddedin eachstemm

4: T 0 fknotsetfor surfacereconstructiog

5: while RMSE > e do

6: if j= Othen

7 calculatethe curvednesdunction k(t)

8: r(t) k()

9: else

10: calculatethe tting error function e(t)

11: r() &)

12:  endif

13:  obtainknot set T/ of K new knots by minimizing
Equatign(1_8) with densityr (t)

4. T T T!

15: t meshM basedon knot set T and update tting
error g of eachvertex x;

16: ] j+1

17: end while

18: return spline surface

scaledto t within a unit cubein orderto normalize tting
errors acrossdifferent models. A perturbationmethodis
usedto avoid knot degenerag.

In Fig. 6, a quartic spline surface, its control points,
the normalized tting error map and the meancurvature
of Bunny obtainedafter 7 roundsof re nementare shovn
in (a), (b), (c), and(d), respectiely. Fig. 7(a,c,e)illustrate
more quartic spline surfaces reconstructedfrom models
of Brain, Gamgoyle, and Pierrot. Their mean curvature
distributions are shawvn in (b), (d), and (f), respectiely.
The corvergencespeedis plottedin Fig. 11(a).

Fig. 8 illustratesan example of Fandisk model recon-
structedby cubicsplinesWe canseein (a), computedknots
automaticallylocateneartheregion that correspondso the
model's sharpfeaturein the initial step.The reconstructed
surface,however, doesnot shav sharpedges/cornerat the
initial stage(b). During subsequenttting iterations,new
knots are insertedinto the region with large tting error
progressiely, andthe surfaceroundingeffect in (e-g) has
almostbeeneliminated.

If knots are placedin generalpositions,i.e., locally no
morethanthreeknotslie on the samegreatcircle, thenthe
reconstructedspline surfaceis globally Ck 1 continuous.
On the other hand, if the knots are co-circulay then the
reconstructedurfacecan have lower degreesof continuity
in the correspondingregion. Certainly modeling sharp
featuress possibleif we intentionally placemultiple knots
or co-circularknots along featurelines on the parametric
domain. Using a similar stratgy to [22], we can detect
sharpfeaturesand apply additional constraintsto enforce
relevant knots to be co-circular In our framewvork, we
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Fig. 5. Reconstructed Bunny after the rst tting step. (@) Reconstructed surface; (b) Reconstructed surface with 680 control
points; (c) Fitting error (maximum error 2:63%and root mean square error 0:376%); (d) Mean curvature distribution; (e) Initial
knots and color-coded tting error map in the parametric domain; (f) Adaptive knot insertion in the second tting step based
on the tting error.

Fig. 6. Reconstructed Bunny after 7 tting steps. (a) Reconstructed quartic surface; (b) Reconstructed surface with 5315
control points; (c) Fitting error (maximum error 0:47%and root mean square error 0:067%9; (d) Mean curvature distribution.

Fig. 7. Examples of degree-4 spherical DCB-splines. From left to right: the tted spline surfaces followed with mean curvature
distribution: Brain, Gargoyle, and Pierrot. Their maximum tting error/root mean square error are: Brain (0:493%0:09099,
Gargoyle (0:636%0:065%9, and Pierrot (0:574%0:058%).

Fig. 8. Sharp feature modeling of Fandisk model using cubic splines. (a) Knot distribution according to the curvedness in
the initial tting step; (b) Reconstructed surface in the initial tting iteration; (c) Control points (the number is 582) of surface
in (b); (d) Color-coded tting error map over surface in (b), with maximum error 9:56% and root mean square error 1:163% (e)
Reconstructed surface obtained in the 8'h iteration; (f) Control points (the number is 4994) of surface in (e); (g) Color-coded
tting error map on surface in (e), with maximum error 0:866%and root mean square error 0:028%

Fig. 9. Reconstructed Igea Surfaces by Quintic Splines using Different Methods. (a) Reconstructed quintic DMS-spline
surface in [27] and its mean curvature distribution (b); (c) DMS-spline surface of (a) after fairing, whose mean curvature
distribution is shown in (d); (e) Our quintic spherical DCB-spline surface and its (f) mean curvature distribution.
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can also integrate a featureextraction pre-processingtep
and apply knot positional constraintsin the adaptive knot
placementstageto enforcesomeknotsto be co-circular

On the otherhand,in this Fandiskexperiment,bene ted
from our CVT methodwhich usescurvednessand tting-
errors as density functions, knots tend to be placedauto-
matically on the parametricregion with large density The
Fandisk model has clear feature lines on the parametric
domain,so eventhoughwe do not intentionally placerele-
vantknotsco-circularly we seethatknotsareautomatically
placed close to sharp curves on the parametricdomain.
As a result, the reconstructedsurface hasrecovered sharp
featureselegantly.

Table 2 summarizeghe statisticsof our surface tting
procedureon the aforementionednodels whereN, denotes
the vertex numberof the discretizedmodels,Deg denotes
thedegreeof sphericaDCB-splinesusedfor surfacerecon-
struction,andN; is the numberof control points. The max-
imum tting erroris denotedas m:e: while the root-mean-
squareerror is denotedasrms For eachof thesemodels,
100 new knotsare insertedduring eachre nement stepto
improve the surfacequality, and the entire processof knot
placemenandoptimizationtakes12-37secondshroughout
thesurface tting processNotethat,thesubsequerrocess
of basisfunction updatingand control point optimization
is the most time-consumingstep, which can usually be
nished in lessthan 1 minute for all the testmodels.For
example, the smallestBunny model (35K vertices)takes
7 iterationsto reach root-mean-squarerror of 0:067%,
andin eachiteration processthe basisfunction updating
takesfrom 11.556t0 14.308secondsandthe control point
optimization processtakes from 4.354 to 7.296 seconds.
The largestDog model (180K vertices)takes 9 iterations
to reachroot-mean-squarerrorof 0:021%,in eachiteration
processthe basisfunction updatingtakes from 22.352to
26.093secondsandthe control point optimizationprocess
takes from 14.266to 17.689 seconds.There exist mary
effective methoddor solvinglinearleastsquaregproblems,
andin this paperwe usethe SingularValueDecomposition
(SVD) methodbecauseof its stability.

Fig. 10. Mean curvature distribution comparison of DMS-
spline and spherical DCB-spline for Dog model. (a) Mean
curvature of degree-5 DMS-spline surface in [25]; (b) Mean
curvature of degree-5 spherical DCB-spline surface.

Our proposedramenwork is alsosuitablefor reconstruct-
ing surfaceswith CX 1 continuity Comparedwith lower-
degree spline surfaces, higherdegree spline surfaces (1)
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Fig. 11. Root Mean Square Errors (RMSE) of surface
ttings . (a) The log of RMSEs (y-axis) versus the number
of tting iterations (x-axis) for quartic surfaces reconstructed
from models of Bunny, Brain, Gargoyle, and Pierrot, with 100
knots being added in each tting step. (b) The log of RMSEs
versus the number of tting iterations for cubic, quartic, and
quintic surfaces reconstructed from Igea model with 100
knots being added in each tting step.

TABLE 2
Statistics of Surface Fitting Experiments.
Model Ny Deg Nit Nc m.e: (%) rmg%)
Bunry 35K 4 7 5315 0.470 0.067
Brain 100K 4 11 8267 0.493 0.090
Gagoyle 100K 4 8 6040 0.636 0.065
Pierrot 93K 4 4 3001 0.574 0.058
Igea 50K 3 8 5556 0.378 0.042
Igea 50K 4 7 5304 0.461 0.042
Igea 50K 5 6 5286 0.559 0.040
Fandisk 56K 3 8 4994 0.866 0.028
Dog 180K 5 9 7790 0.344 0.021

inherently have higherorder continuity, (2) usually take
lessiteration stepsfor better tting, but (3) require more
computatiortime to satisfythe samethresholdrequirement.

The corvergencespeedof cubic, quartic, and quintic
splinesurfacesreconstructedrom Igeamodelareshown in
Fig. 11(b).It canbe seenthat, to reachthe sameroot mean
squareerror, splines with higherdegree will take fewer
iteration steps. For example, cubic, quartic, and quintic
spline surfacestake 8, 7, and 6 iterationsto satisfy the
requirementof the sameroot meansquareerror 0:042%,
respectiely (seeTable 2).

6 COMPARISON AND CONCLUSION

In this paper we have articulateda surfacereconstruction
schemefor tting genus-Oclosed surfacesbasedon the
sphericalgeneralizatiorof Delaunaycon guration B-spline
(DCB-spline).Thereconstructedienus-Cclosedspline sur
faceis smoothCK continuouseverywhere andhasanalytic
representatior-urthermorethe continuity is naturallypre-
sened without enforcingary additionalconstraints.
Comparison with previous DCB-splines. In compari-
sonwith our previouswork [31], the currentframework has
threesigni cant improvements:1) To de ne the spherical
counterpartof planar DCB-splinesin [31], we generalize
the de nition of Delaunaycon gurations from planar to
sphericaldomain. We also articulate an ef cient method
for sphericalDelaunaycon guration computationto make
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this splineformulationmoreusefulin practicalapplications;
2) In [31], to reconstructa closedgenus-Osurface, spline
patchesde ned over planar disks are stitched together
by C° blending functions, hencethe nal representation
hasonly C° continuity acrossthe patches'boundariesin
this paperthe reconstructediegreek sphericalDCB-spline
surfaces are CX 1 continuous acrossthe entire domain
without ary segmentationandstitching processhigh-order
continuity is obtainedelegantly; 3) In [31], we usethe k-
meancluster methodto insertonly one new knot in each
tting iteration. We now generateknots by minimizing a
CVT enegy function with adaptie density functions. A
larger set of knots are simultaneouslyinsertedto regions
with sharpgeometricfeaturesor large tting errors.The
tting ef ciency hasthereforegreatlyimproved.

Comparison with DMS-splines. Degreek spline sur
facestypically have continuity of orderk 1; hencetheir
(k 1)-th orderderivativeswill have discontinuitiesalong
the so called “knot lines”, i.e., line sggmentsbetweentwo
knots used for spline reconstruction.In case of DMS-
splines, a “cloud” of auxiliary knots with size of k are
associateavith eachoriginal knot in orderto reconstruct
degreek splinesurface.Sincethe knot lines areintensiely
distributed nearedgesof the domaintriangularmesh(from
the triangulation of original knots), the mean curvature
distributions of the surface along the curved triangular
boundaries(correspondingto the edgesof the domain
triangulation)becomemuch worsethan other regions (see
Fig. 10(a) in [27] and Fig. 9(b) in [25]). To generatea
visually-smoothhigh-quality surface, post-processingro-
cedureq25], [27] are necessaryUnfortunately the fairing
processunavoidably eliminatesome ne detailsof the tted
surfaceaswell (seeFig. 9(c-d)).In contrastsphericaDCB-
splines are free of auxiliary knots, so the “knot lines”
evenly distribute over the entireparametricdomain,andthe
cunature changessmoothly As showvn in Fig. 9(e-f), the
degree-5sphericalDCB-spline surfaceis visually smooth
with mary ne geometricdetailspresered.

Limitation and future work. One limitation of our
current schemeis that, we only focus on closed genus-
0 surfacesin this paper It is much more desirableif
our schemecould handle general surfaces with higher
genus. One necessarystep of improving our schemeis
to generalizesphericalmapping for high genusmodels,
and such spherical mapping for models of complicated
topology is theoreticallypossible.According to Riemann
surface theory a conformal map betweena surface and
the spheres equivalentto a meromorphidunction de ned
on the surface. Intuitively speaking,this map wraps the
surface onto the spherewith several layers while having
branchpoints. The numberof layersand branchpointsare
solely determinedby the surface topology and Riemann-
Hurwitz theorem. Different layers can be consideredas
different sphericaldomains,sharingat mosttwo common
points betweeneach other Upon such parameterization,
Ck 1 continuoussurfacescould thereforebe reconstructed
everywhereexcept at these2g+ 2 branchpoints (hereg
is the genusnumber). We plan to explore its effective
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computationin surface tting procedures.

Although we only focus our researchendeaors on
surface tting in this paper potentialapplicationsof spher
ical splinesare much broaderand not limited to shape
modelingandgraphics.In geo-physicabpplicationshigh-
order splineswith data interpolation are often desirable.
We plan to further re ne our algorithm by integrating an
effective interpolationconstraintand apply it in geology
geographyand geo-physicdasks.
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