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Figure 1: Parameterizing the beetle model with several holes using our approach. (a) The beetle model; (b) the parametrization result; (c),(d)
different views of texture mapping results.

Abstract

This paper presents a novel parameterization method for a non-
closed triangular mesh. For every flattened 1-ring neighbors, we
choose a local coordinate frame, and the local geometry structure
is represented as local parametric coordinates. Then the global op-
timal parametric coordinates are attained by aligning all the local
parametric planes while preserving the local structure as much as
possible. The boundary conditions are not necessary in our method,
thus no high distortion appears around the boundary, and distortion
is uniformly distributed over parametric domain. In addition, our
method can operate directly on mesh surface which has holes with-
out any preprocessing of surface partition. Furthermore, linear con-
straints are allowed in the parameterization in a least squares sense.

CR Categories: J.6 [Computer-Aided Engineering]: Computer-
aided design—Surface parameterization;

Keywords: Surface parameterization, local geometry structure,
alignment, texture mapping

1 Introduction

Surface parameterization can be viewed as a one-to-one mapping
from a mesh surface onto a suitable domain. Generally, a complex
mesh is decomposed into a set of simple patches that are topologi-
cally equivalent to disks. When unfolding a patch onto a plane, the
reduction of angle and area distortion are the two principal aims.
The existing non-linear methods addressing this issue usually lead
to intricate and computationally expensive numerical schemes. On
the other hand, most of the linear methods require to fix the bound-
ary of the patch, which typically generate significantly more distor-
tion than free-boundary techniques. In particular, if a non-closed

∗Correspondence: ligangliu@zju.edu.cn

patch has more than one boundary (i.e., having holes inside it), a
general approach is to partition the patch into a set of simple sub-
patches. As we have known, partition often produces high distor-
tion and discontinuity along cutting boundaries.

In this paper, we present techniques for surface parameterization by
solving eigen system of a matrix or solving linear systems which
can deal with meshes with multiple boundaries and does not re-
quire fixed boundaries. This is a new way of creating non-convex
parameterization patches that may even have holes.

We are much inspired by the recent work of local tangent space
alignment (LTSA) algorithm for manifold learning and nonlinear
dimensionality reduction[Zhang and Zha 2005]. In the convex com-
bination method, an interior vertex is represented as a convex com-
bination of its 1-ring neighbors [Floater 1997], while we represent
the local geometry structure of the vertex and its 1-ring neighbors
as local parametric coordinates. In our approach, the local patch
is optimally flattened into a small planar patches, keeping the local
geometry structure well. Different local patches might have over-
lapped region with each other.

Then the global optimal parametric coordinates are attained by
aligning all the local parametric patches [Zhang and Zha 2005].
Since most of the vertices correspond to more than one local patch,
a direct placement of all patches could not in general be conform-
ing with all the individual local patches. All the local patches are
aligned in the plane by different local affine transformations to ob-
tain a global coordinate system. Thus, the global alignment is per-
formed by minimizing all the transformations of the local patches,
which preserves the local geometry structure as much as possible.
This is attained by solving the eigenvalues and eigenvectors of a
matrix.

As the alignment optimization is performed over all vertices, it is
not necessary to set boundary conditions. Thus no high distortion
appears around the boundary and distortion is uniformly distributed
over parametric domain. In addition, our method can operate di-
rectly on mesh surface which has holes without any preprocessing
of surface partition, while partition-based methods often produce
high distortion and discontinuity around the partition boundaries.
Linear constraints on the vertices on the parametric domain are
easily be integrated into our parameterization approach, which is
obtained by solving a sparse linear system.
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Our method preserves both the local and the global structure of the
mesh surface, and it is very suitable for computer graphics applica-
tions which require parameterization with low geometric distortion,
such as texture mapping.

2 Related Work

There has been a large amount of work on surface parameteriza-
tions in the literature. We refer the reader to [Floater and Hormann
2005] for a more general survey. Below we briefly review the major
techniques.

Fixed boundary approaches treat the surface flattening problem as
minimizing a functional that measures the distortion of the trian-
gles, which typically generate significantly more distortion than
free-boundary techniques. Generally, the boundary vertices are
fixed on a convex polygon. Then the parameterization for the in-
terior vertices is formulized as a large linear system or a nonlinear
optimization problem[Floater 1997; Floater 2003].

Non-linear approaches do not require to fix the boundaries[Sheffer
and de Sturler 2001; Lévy et al. 2002; Sheffer et al. 2005].
Zigelman et al. use a multi-dimensional scaling (MDS) method
that optimally preserves the geodesic distances between mesh ver-
tices[Zigelman et al. 2002]. In a recent work, Zayer et al. present a
boundary-free parameterization method consisting of several sim-
ple steps, each solving a linear problem. The overall process is con-
trolled using suitable guidance tensor fields reflecting the intrinsic
surface geometry [Zayer et al. 2005]. The non-linear approach in
[Zhang et al. 2005] uses Green-Lagrange tensor to measure and to
guide the optimization process by adding scaffold triangles. Other
approaches use the global conformal structure or discrete one-forms
to parameterize surface [Gu and Yau 2003; Gortler et al. 2006;
Kharevych et al. 2006; Ray et al. 2006].

A limitation of planar parameterization techniques is that it gener-
ally requires that an entire surface be cut into one or more disk-like
charts, where each chart is parameterized independently[Gu et al.
2002; Sander et al. 2003]. A closed genus-zero surface can be pa-
rameterized into the unit sphere without any cuts [Praun and Hoppe
2003; Gotsman et al. 2003]. Other approaches parameterize the
mesh onto a simplicial domain which could be a simplified based
mesh [Lee et al. 1998] or an abstract simplicial complex [Praun
et al. 2001; Kraevoy and Sheffer 2004].

Surface parameterization is also related to the problems of dimen-
sionality reduction and manifold learning which aim to compress
the data in size and to discover compact representations of its vari-
ability. Classical techniques include principal components analysis
[Jolliffe 1989] or multidimensional scaling (MDS)[Cox and Cox
1994]. More generally there is a wider class of techniques. Local
approaches (LLE [Roweis and Saul 2000], Laplacian Eigenmaps
[Belkin and Niyogi 2002]) attempt to preserve the local geometry
of the data by mapping nearby points on the manifold to nearby
points in the low-dimensional representation. Global approaches
(Isomap [Tenenbaum et al. 2000]) attempt to preserve geometry at
all scales. Recently, the local tangent space alignment (LTSA) algo-
rithm [Zhang and Zha 2005] uses the tangent space in the neighbor-
hood of a data point to represent the local geometry and then align
those tangent spaces to construct the global coordinate system.

3 Global Alignment of Optimal Local Flatten-
ing

We begin with a brief overview of the proposed framework and then
elaborate on its different components.

3.1 Overview

A triangular surface mesh M is represented as the pair (T , X) ,
where T is a simplicial complex representing the connectivity of
vertices, edges and faces, and X = {x1,x2, ...,xN}, where xi

refer to the geometric position of the vertices in R3. The triangu-
lar surface mesh M we deal with in this paper is non-closed, but
possibly with holes.

Let xi1 , ...,xik be the 1-ring neighbors of xi, and define Xi =
{xi,xi1 , ...,xik}. Then our basic approach consists of the follow-
ing two steps:

• Optimal local flattening: The local patch consisting of a ver-
tex as well as its 1-ring neighbors is optimally flattened into
small planar patches. All the local patches may overlap with
each other.

• Global Alignment: All the local patches are aligned in the
plane by different local affine transformations to obtain a
global coordinate system. The local geometric structures of
the patches are preserved as much as possible during the align-
ment.

3.2 Optimal local flattening

There are different ways of mapping Xi into the plane, i.e., map-
ping xi into qi and xi1 , ...,xik into suitable qi1 , ...,qik respec-
tively.

We adopt a local geodesic polar map first introduced by Welch and
Witkin [Welch and Witkin 1994], which has been known in differ-
ential geometry which preserves arc length in each radial direction.
The vertex xi and its neighbors are flattened in the plane such that
the edge length are exactly preserved, and the angles between two
consecutive edges are preserved up to a common factor. This can
easily be done incrementally, by selecting a first edge and construct-
ing the flattened 1-ring by pivoting around the middle vertex while
ensuring the desired properties. That is,

‖ qij − qi ‖=‖ xij − xi ‖,

∠(qij ,qi,qij+1) = 2π∠(xij ,xi,xij+1)/

kX
j=1

∠(xij ,xi,xij+1),

j = 1, ..., k,

where xik+1 = xi1 , qik+1 = qi1 and ∠(a,b, c) denotes the angle
between the vectors a− b and c− b, see Fig. 2(a),(b).

For boundary point xi and its 1-ring neighbors, we compute
qi1 , ...,qik as

‖ qij − qi ‖=‖ xij − xi ‖,

∠(qij ,qi,qij+1) = ∠(xij ,xi,xij+1), j = 1, ..., k.

It can be seen that qi,qi1 , ...,qik are unique up to translations and
rotations in R2 [Floater 1997]. We set qi = 0 and qi1 = (‖ xi1 −
xi ‖, 0) and then compute qi2 , ...,qik in sequence.

This local flattening may be regarded as an optimal mapping be-
cause it is approximately conformal as it preserves the angle ratios,
and some local lengths as well.
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Figure 2: Local and global parametric coordinates of a vertex and
its 1-ring neighbors: (a) vertex and its 1-ring neighbors; (b) optimal
local flattening; (c) global parametric coordinates.

3.3 Global alignment

Now for each vertex xi and its 1-ring neighbors xi1 , ...,xik , we
have a flattened patch. The local geometry structures of all patches
are represented as local parametric coordinates {qi,qi1 , ...,qik}.

We now consider to construct the global parametric coordinates
ti ∈ R2, for all the vertices xi, i = 1, ..., N, see Fig. 2(c). We
want the global coordinates to preserve local geometry structures
determined by the local coordinates qij . The basic idea is inspired
from the work of [Zhang and Zha 2005]. We briefly introduce the
global alignment approach in this section.

Each of the local patches qi,qi1 , ...,qik corresponds to a patch
ti, ti1 , ..., tik in the global parametrization, see Fig. 2(c). Since
most of the vertices correspond to more than one local patch, a
direct placement of all patches could not in general be conforming
with all the individual local patches.

For each pair of local patches {qi,qi1 , ...,qik} and
{ti, ti1 , ..., tik}, we compute an affine transformation Ui ∈ R2×2

(without translation term) between them which minimizes the
following errors:

kX
j=0

‖εij‖2, i = 1, 2, ..., N,

where

εij = tij − (ti + Uiqij ), j = 0, 1, ..., k, i = 1, ..., N, (1)

is the local reconstruction error and i0 = i. Let

Ti = [ti, ti1 , ..., tik ], Qi = [qi,qi1 , ...,qik ].

Denoting Ei = [εi, εi1 , ..., εik ], we can rewrite Eq. 1 in matrix
form as

Ei = Ti(I − e1T )− UiQi, i = 1, ..., N. (2)

Then the optimal affine transformation matrix Ui is obtained in ma-
trix form by

Ui = Ti(I − e1T )Pi, (3)

where I is the identity matrix, e = [1, 0, ..., 0]T is a vector con-
taining 1 in first position and 0 elsewhere, 1 is a k + 1-dimensional
column vector of all ones, and Pi = QT

i (QiQ
T
i )−1.

We substitute the form of Ui in Eq. 3 into Eq. 2 and rewrite Ei in
terms of the matrix Ti as

Ei = Ti(I − e1T )(I − PiQi), i = 1, ..., N.

To preserve as much of the local geometry in the global parametric
coordinates, we minimize the overall reconstruction errors, i.e.,

NX
i=1

ωi‖Ei‖2F =

NX
i=1

ωi‖Ti(I − e1T )(I − PiQi)‖2F ,

where the weights ωi are areas of local flattened patches and ‖.‖F

stands for the Frobenius norm of a matrix.

Let T = [t1, t2, ..., tN ], Wi = (I − e1T )(I − PiQi), and Si be
the 0 − 1 selection matrix such that TSi = Ti. We then need to
find the T to minimize the overall reconstruction error

NX
i=1

ωi‖Ei‖2F = ‖TSW‖2F , (4)

where S = [S1, ..., SN ] and W = diag(
√

ω1W1, ...,
√

ωNWN ) .
The minimization of Eq. 4 is performed subject to some constraints
that make the problem well posed. Otherwise, one can just choose
T to be zero. We rewrite T in the from, T = [u,v]T , where u,v ∈
RN×1 are N -dimensional column vectors. To avoid T degenerating
into zero, we will impose the constraints

‖u‖2 = 1, ‖v‖2 = 1. (5)

Note that we can translate the output T by a constant displacement
without affecting the minimization objective function. We remove
the translational degree of freedom by requiring the outputs to be
centered on the origin:

NX
i=1

ti = 0. (6)

If u and v are linearly dependent, all the output points will lie on
one line. Based on this insight, we require that vectors u and v are
orthogonal:

uT · v = 0. (7)

This constraint makes the surface be flattened as much as possible.

Under the constraints Eq. 5- 7, the optimal global parametric coor-
dinates T is uniquely determined up to a rotation. The optimization
of Eq. 4 can be performed by introducing Lagrange multiplier to
enforce the constraints in Eq. 5- 7.

Using some matrix computing techniques[Horn and Johnson 1990;
Zhang and Zha 2005], the optimal global coordinates T is given by
the two eigenvectors of the matrix B corresponding to the 2nd and
3rd smallest eigenvalues, where the matrix B is as follows

B = SWW T ST . (8)

Note that the smallest eigenvalue of matrix B is zero and the cor-
responding eigenvector is the vector 1 of all ones. Discarding this
eigenvector enforces the constraint in Eq. 6 that the parametriza-
tion region is centered at origin.

As we have seen from the above derivation, all the local flattened
coordinates are optimally aligned in the plane by different local
affine transformation to obtain a global coordinate system. And
an elegant computation approach in matrix form is derived.

4 Texture Mapping with Feature Constraints

In texture mapping an image is wrapped on a mesh surface in order
to give it a realistic look, which benefits from the planar parame-
terization. To achieve better results, it is often necessary to force a
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(a) (b) (c)

Figure 3: User interactive parameterization in realtime: (a) the orig-
inal mesh; (b),(c) parameterization results with different point con-
straints.

correspondence between some of the details of the texture and the
features of the model. For example, in a 3D face mesh, it is impor-
tant to register the eyes of the mesh and the eyes in the image, and
the same for the mouth, nose and any other prominent features, see
Fig. 6.

The constrained texture mapping problem can be thought as param-
eterizing the 3D mesh while constraining some of the vertices to lie
in a specified feature position in the texture coordinate plane. That
is, some position constraints should be added into the minimization
problem in Eq. 4.

The user can constrain some points to given parameter values as

tik = cik , k = 1, ..., s. (9)

We add the additional constraints Eq. 9 as soft constraints in the
minimization of Eq. 4, which results in the following linear system

TA = T [SW, L] = [0, C], (10)

where L is N × s matrix in which each column contains only one
non-zero element used to constrain the position of the points with
the element:

ljk =


µ, j = ik;
0, else;

1 ≤ k ≤ s, 1 ≤ j ≤ N ;

where µ is the weight of the point constraints, A = [SW, L], and
C = µ[ci1 , ..., cis ] is a 2× s matrix.

The least squares solution of the linear system can be found by
solving the normal equation of Eq. 10, which is equivalent to min-
imizing the following error function:

‖TSW‖2F + µ2
sX

k=1

‖cik − tik‖2.

The positions of the points can be found by solving the sparse linear
system in Eq. 10 in a least squares sense as:

T = [0, C]AT (AAT )−1.

Thanks to the linear nature of solutions of the linear system, we can
allow the user to interactively modify the positions of constrained
points while updating the parameterization in realtime. First we
compute the least squares solutions of the following linear equa-
tions:

gT
k A = [0, µeT

k ], k = 1, ..., s,

where ek is an s × 1 column vector containing 1 in k-th position
and 0 elsewhere, and gk is the unknown N × 1 column vector.
By solving these linear systems, we obtain a set of basic solutions

gk(k = 1, ..., s) of Eq. 10. Thus the solution of Eq. 10 can be
explicitly represented as

T =

sX

k=1

cikgT
k .

Therefore, the parameterization for a given set of constrained points
can easily be reconstructed in realtime. And the user can interac-
tively adjust the positions of constrained points to get a satisfying
parameterization result, see Fig. 3.

5 Experimental Results

We have applied our parameterization approach to a variety of non-
closed 3D meshes.

Fig. 4(a) shows an irregularly sampled face model. Fig. 4(b)
shows the parameterization result using the proposed approach.
Note that the symmetry of the face features is preserved despite
the drastic change in sampling rate. Fig. 4(c) shows the model
with a checkerboard texture map in order to visualize the quality of
the parameterization. We can see that the checkerboard pattern is
not visibly distorted by the mapping.

We compare our method with the method proposed in [Zigelman
et al. 2002] which finds an embedding of an open mesh in the plane
by a multi-dimensional scaling (MDS) method that optimally pre-
serves the geodesic distances between mesh vertices. This method
also does not require predefined planar boundary. However, the
method does not work well for meshes with holes, see Fig. 5. Any
hole will likely be a circle in the parameterization domain in the
method as it preserves the geodesic distance between vertices but
introduces high distortions around interior boundaries, as shown
in Fig. 5(b). Moreover, this method is computationally expensive,
since it requires computing the geodesic distance between every
two vertices on the surface. The mesh model with 803 vertices
and 1524 triangles shown in Fig. 5(a) is flattened in 0.457 and 91
seconds by our method and method of [Zigelman et al. 2002] re-
spectively. We obtain satisfying parameterization results of meshes
with holes using our method, see Fig. 5(c) and Fig. 1.

Fig. 6 shows the result of texture mapping by adding feature point
constraints in the planar parameterization. The prominent features
on the 3D face model shown in Fig. 6(a), including eyes, nose, and
mouth, are specified to be mapped to the corresponding points in
the image show in Fig. 6(b). We obtain a proper texture mapping
without any pre-operations on the texture image, such as warping
and deformations, see Fig. 6(c) and (d).

As described in Section 4, the user can interactively adjust the po-
sitions of constrained points to get a satisfying parameterization re-
sult in realtime. Fig. 3(b) and Fig. 3(c) show two parametrization

(a) (b) (c)

Figure 4: Example of parameterizing irregularly sampled model:
(a) original face model; (b) parameterization result; (c) different
views of the model with checkerboard texture mapping.
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(a) (b) (c)

Figure 5: Comparison with method of Zigelman et al.’s method:
(a) original face model with holes; (b) parameterization result of
Zigelman et al.’s method; (c) parameterization result of our method.

(a) (b) (c) (d)

Figure 6: Constrained texture mapping: (a) The original face model
with constrained vertices marked as red dots; (b) texture image with
positions corresponding to constrained vertices ; (c), (d) textured
model with different views.

results of the mesh shown in Fig. 3(a) under two different point
constraints specified by the users.

It is worthwhile to point out that we can also add other linear con-
straints such as line constraints into our method. Fig. 7(a) shows
a twisted surface with a sharp edge in green color. The vertices
on the sharp edge are constrained to be mapped onto the points lo-
cated at one line on texture domain shown in green color in Fig.
7(b). Hence the boundary in texture image coincides with the sharp
edge on the twisted surface after texture mapping (see Fig. 7(c)).
Furthermore, users can introduce scores of constraints while main-
taining a low-distortion parameterization.

5.1 Implementations

The most time-consuming parts of our algorithm are computing
the eigenvectors of the matrix B in Eq. 8 and solving the lin-
ear system Eq. 10. Note that both the matrix B and AAT are
sparse and symmetric. We use the ARPACK sparse eigensystem
solver (http://www.caam.rice.edu/software/ARPACK) to compute
the eigenvectors of B. It implements an iterative Arnoldi method
that allows us to efficiently compute only the bottom 2 eigenvectors

(a) (b) (c)

Figure 7: Texture mapping with line constraints: (a) a twisted sur-
face with a sharp edge; (b) a texture image; (c) the texture mapping
result.

of B. And we use the direct solver TAUCS [Toledo 2003] in our
implementation to solve the sparse linear system.

A summary of the results of our method is shown in Table 1. All
the examples presented in this paper were made on a 2.8GHz Pen-
tium IV computer with 1.0GB memory. For comparison, we use
the geometric stretch metric L2 and L∞ defined in [Sander et al.
2001] as the measures. The L2 norm measures the mean stretch
over all directions, while the worst-case norm L∞ measures the
greatest stretch. Our method turns out to solve a linear system of
equations if any user constraints are given. All running times and
stretch measures of our method with user constraints are measured
before user adjusting the positions of constrained points. The dif-
ference between the running times of both of our methods is very
small, thanks to using the efficient sparse eigensystem solver in our
implementation. We can see that parameterization results generated
by our method without user constraints always have lower distor-
tions.

5.2 Discussion

The optimization of Eq. 4 can be performed subject to either non-
linear constraints 5- 7 or linear constraints 9. The user can con-
strain serval points to given positions to get a least squares solution,
other than to optimize the Eq. 4 with the nonlinear constraints 5−7
by computing the eigenvectors of matrix. However, sometimes it is
hard to specify points to appropriate positions, and we find that the
solutions with nonlinear constraints always have lower distortions
(see Table 1).

In this paper, we adopt a simple way which only considers flattening
each 1-ring neighborhood to plane. It is proved to be sufficient in all
our experiments. However, any other low-distortion local flattening
methods (with larger region of neighborhood) can be integrated into
our framework.

6 Conclusion

We proposed a novel approach for parameterizing a non-closed tri-
angular mesh that might have interior holes. Our approach is in-
spired by the recent work of LTSA for manifold learning. First
each patch consisting each vertex as well as its 1-ring neighbors is
optimally flattened in a local coordinate frame. Then all the local
flattening patches are aligned by different local affine transforma-
tions to obtain a global coordinate system. The boundary conditions
are not necessary in our method, thus no high distortion appears
around the boundary, and distortion is uniformly distributed over
parametric domain. The user can also specify linear constraints and
the parameterization is obtained in a least squares sense. Our ap-
proach can preserve both the local and global structure of the mesh
surfaces, thus it is very suitable for many computer graphics appli-
cations including texture mapping.

The major drawback in our current implementation is that the pro-
posed approach may contain local overlapping triangles in the pla-
nar embedding. It is much worthwhile to combine some iterative
method such as [Sander et al. 2001] with our approach to produce
unfolding mapping.
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