
EUROGRAPHICS 2006 / E. Gröller and L. Szirmay-Kalos
(Guest Editors)

Volume 25(2006), Number 3

Easy Mesh Cutting

Zhongping Ji, Ligang Liu†, Zhonggui Chen, and Guojin Wang

Department of Mathematics, Zhejiang University, China
State Key Lab of CAD&CG, Zhejiang University, China

Abstract
We present Easy Mesh Cutting, an intuitive and easy-to-use mesh cutout tool. Users can cut meaningful compo-
nents from meshes by simply drawing freehand sketches on the mesh. Our system provides instant visual feedback
to obtain the cutting results based on an improved region growing algorithm using a feature sensitive metric. The
cutting boundary can be automatically optimized or easily edited by users. Extensive experimentation shows that
our approach produces good cutting results while requiring little skill or effort from the user and provides a good
user experience. Based on the easy mesh cutting framework, we introduce two applications including sketch-based
mesh editing and mesh merging for geometry processing.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Geometric algorithms,
languages, and systems

1. Introduction

Triangular meshes are commonly used to define geomet-
ric objects in computer graphics applications. Although this
representation is useful for rendering, this low-level descrip-
tion is often inadequate for acquiring meaningful informa-
tion required in some tasks such as object recognition, fea-
ture analysis, and shape matching. In searching for good
high-level description, psychological studies have shown
that human shape perception is partly based on meaningful
decomposition.

Mesh segmentation, like image segmentation, is the pro-
cess of partitioning a mesh into more visually simple and
meaningful components. It has recently become of interest
and a key ingredient in many mesh manipulation algorithms.

However, human perception is extremely complicated.
Both the concept of "meaningful" and the component de-
composition are highly subjective and hard to qualify, not to
mention computing the meaningful decomposition automat-
ically. Thus it remains a challenge to define useful high-level
structures for arbitrary meshes.

We aim to cut a mesh into components that are consistent
with user intention and human shape perception. Generally,

† Correspondence: ligangliu@zju.edu.cn

users cut a meaningful component from its underlying mesh
by specifying which parts of the mesh belong to the "fore-
ground" (the part you want to cut out) and the rest to the
background. Although it is quite easy for a human to specify
foreground and background by saying something like "cut
out the ears from the bunny model" to another human, the
computer is still a long way from the sort of cognitive object
understanding required to do this work unassisted.

1.1. Our approach

We proposeEasy Mesh Cutting, which is a novel interactive
sketch-based system for mesh cutting. The sketch-based user
interface is inspired by the emerging sketch-based applica-
tions [IMT99,KG05], particularly Lazy Snapping [LSTS04]
for image cutout.

As shown in Figure 1(a) and (b), the user simply and
quickly draws freehand sketches on the mesh in our system.
The freehand strokes roughly mark out the subpart of inter-
est (as foreground) and background (green sketch for fore-
ground and red sketch for background). The subpart of inter-
est is then cut out from the mesh (shown in pink in in Figure
1(a) and (b)) in real time via an efficient region growing seg-
mentation algorithm based on an improved feature sensitive
metric (see Section 3). The cutting boundary is almost cor-
rect and is smoothed by snakes (see Section 5.1). The user

c© The Eurographics Association and Blackwell Publishing 2006. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.



Z.P. Ji, L.G. Liu, Z.G. Chen, & G.J. Wang / Easy Mesh Cutting
 

 
   
 
 

( )a

( )c ( )d

( )b

Figure 1: Easy mesh cutting examples. Users draw two free-
hand sketches on meshes to mark out foreground (in green)
and background parts (in red). The bunny model (a) and the
dog model (b) are cut into head and body parts respectively;
(c) pasting dog head onto bunny body; (d) pasting bunny
head onto dog body.

can navigate the mesh to inspect the boundary polygon that
is unsatisfactory and then use a brush to override a segment
of polygons or click and drag polygon vertices directly.

Our system is efficient and easy to use. Many experiments
show that our system extracts perceptual components pre-
cisely and efficiently while requiring little skill or effort from
the user. Our method improves traditional, fully automatic
segmentation by involving human users in the process, yet
minimizing user input and providing realtime feedback.

To our knowledge, this is the first time that an intuitive
and simple sketch-based interface has been provided for both
expert users and untrained users to cut out a mesh surface in
such an easy manner.

1.2. Overview

The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly review related work. An improved feature
sensitive metric is proposed in Section 3. Section 4 describes
our easy mesh cutting framework. Section 5 discusses the
approaches for optimizing the cutting boundary. Additional
experimental results are illustrated in Section 6. We con-
clude the paper in Section 7 with the summary and future
work.

2. Related work

There is a great deal of work on mesh segmentation and its
application in the literature. Here we review, only the most
relevant work, emphasizing mesh decomposition and sketch-
based user interface techniques.

Human perception.Studies have shown that human percep-
tual system uses meaningful feature decomposition as the
primary index into recognition of shapes [Bie87]. Various
algorithms and theories have been provided to describe hu-
man perception. For example, the minima rule and salience
theory have been proposed in human cognitive vision the-
ory [HR84, HS97]. The minima rule states that human per-
ception usually divides a surface into parts along negative
minima of the principal curvatures. The part salience theory
provides factors of the object size relative to the whole ob-
ject, the degree to which it protrudes, and the strength of its
boundaries to determine the salience of segments. But hu-
man perception is more complicated than the minima rule or
part salience theories.

Mesh segmentation.Mesh segmentation techniques can be
classified into patch-type and part-type. Patch-type segmen-
tation is often used for texture mapping, building charts, sim-
plification and remeshing [LPRM02,GCO06]. Part-type seg-
mentation divides a mesh into meaningful parts without re-
stricting the part topology. Several approaches to automati-
cally segment mesh into meaningful components have been
proposed in the past. The minima rule has been used for
mesh segmentation recently [KT03]. The watershed-based
scheme by Magan and Whitaker [MW99] favors partition
boundaries along high curvature regions. A mesh segmenta-
tion method using mean shift is proposed in [YLL ∗05]. Lee
et al. [LLS∗05] present an intelligent manual scissoring tool
for meshes.

Sketch-based user interface.In recent years, sketch-based
interfaces have emerged as an approach to enhance user
interactions for various design activities ranging from im-
age segmentation to geometric design. They are expected
to provide flexible interaction between computers and users
that do not hinder creative thinking. Sketch-based interac-
tion has been successfully used in object selection in im-
age [TA01] and graph cut image segmentation [LSTS04].
There has also been substantial interest of developing intu-
itive sketch-based interactive techniques for 3D applications
by sketching curves in the image plane as the direct interac-
tion in 3D space is often a confusing and cumbersome task
for non-expert users [IMT99,KG05,NSACO05].

3. Feature sensitive metric

Pottmann et al. introduced theisophotic metric[PSH∗04],
a new metric on surfaces, in which the length of a surface
curve is not just dependent on the curve itself, but also on
the variation of the surface normals along it. They consider
the field of unit normal vectorsn(x) attached to the surface

c© The Eurographics Association and Blackwell Publishing 2006.



Z.P. Ji, L.G. Liu, Z.G. Chen, & G.J. Wang / Easy Mesh Cutting

pointsx ∈ Sas a vector-valued image defied on the surface.
One can map each surface pointx to a pointx f = (x,wn)
in R6 wherew denotes a non-negative weight, whose mag-
nitude regulates the amount of feature sensitivity and the
scale on which one wants to respect features. In this way,
S is associated with a 2-dimensional surfaceSf ⊂ R6. By
measuring distances of points and lengths of curves onSf
instead ofSa feature sensitive metric on the surface is intro-
duced [PSH∗04]. Pottman et al. have used this feature sen-
sitive metric for feature sensitive morphology on surfaces
[PSH∗04] and for the design of curves on surfaces which
are well aligned with the surface features [PLH∗05].

The isophotic metric distance between two pointsp and
q on a surface is dependent on the pathΓ on the surface
connecting the two points and is defined via the arc length
differential as the following:

dΓ(p,q) =
∫

Γ
ds+w

∫

Γ∗
ds∗,

wheredsis the arc element ofΓ, ds∗ is the arc element ofΓ∗
which is the Gaussian image ofΓ, andw > 0 is the weight
of the isophotic components.

As the minima rule is an approximated perceptual crite-
rion in vision theory, we improve the isophotic metric by
considering the curvature as:

dΓ(p,q) =
∫

Γ
ds+w

∫

Γ∗
ds∗+w∗

∫

Γ
f (kD)ds,

wherekD is the normal-section curvature in the direction tan-
gent to the pathΓ, f is a function of curvature, andw∗ > 0
is the weight of the curvature metric.

As pointed out by the minima rule, all negative minima
of the principal curvatures (along their associated lines of
curvature) form boundaries between perceptual parts. There-
fore, we augment the effect of negative curvature in the im-
proved isophotic metric by setting curvature function as fol-
lows:

f (kD) =
{

kD, kD ≥ 0,
g(|kD|) , kD < 0,

whereg(x) is an augmentation function that can be set like
g(x) = 3x, g(x) = x2, org(x) = ex, etc. From experiments we
find the augmentation functiong(x) = ex−1 performs well
in finding the concave boundary of the visual part. The prin-
ciple behind it is that the value ofg(x) becomes extremely
large when the negative curvature is large, which is in accord
to the minima rule. Thus the improved isophotic metric is a
feature sensitive metric according to the minima rule.

In our implementation, we approximate the computation
of the improved isophotic metric in a discrete form for tri-
angular meshes. For a vertexp and its neighbor vertexq on
the mesh, the distance between them are calculated as the
following:

d̄Γ(p,q) = |p−q|+ω |np−nq|+ω∗ f (k−→pq),

wherenp andnq are respectively the normals of verticesp
andq, k−→pq is the directional curvature along the line direc-

tion−→pq.

The directional curvature at the mesh surface can be com-
puted by various methods. We adopt a simple linear algo-
rithm in which principal curvatures and principal directions
are obtained by computing in closed form the eigenvalues
and eigenvectors of certain3× 3 symmetric matrices de-
fined by integral formulas, and closely related to the matrix
representation of the tensor of curvature [Tau95]. Then the
directional curvature can be estimated based on the principal
curvatures and principal directions by Euler formula.

4. Easy mesh cutting framework

In this section we describe our novel framework of easy
mesh cutting. First we present the sketch-based user inter-
face and later, in successive sections, we describe each step
in more details.

4.1. User interfaces

The input data sets are triangular mesh models that we want
to cut. Our system allows users to use marker sketches to
specify the part of interest on the meshes.

The user loads a mesh model into our system, navigates it
freely, and selects an appropriate view position. To specify
an interesting part on the mesh, the user marks a few free-
hand sketches on the image plane by dragging the mouse
cursor while holding a button (left button indicating the fore-
ground and right button for the background). The strokes
for foreground and background parts are displayed in green
and red respectively (Figure1(a),(b)). This marking UI is in-
spired by the similar UI presented in [LSTS04] for image
cutout.

The sketches in the image plane are then projected onto
the surface of the mesh in 3D world space by computing the
point of intersection of rays from the view point through the
points on the sketch curve.

These high level sketches specified by users need not be
very precise. As shown in Figure1(a),(b) and Figure5, most
marking strokes are actually far from the component bound-
aries. After the user finishes marking the sketches, our sys-
tem starts the cutting process based on the sketch informa-
tion. The user then inspects the cutting result on screen and
decides if more strokes need to be marked. Therefore, it
is extremely crucial that our system generates the cutting
boundary in a short time. To achieve this goal, our system
adopts a novel and fast region growing algorithm to compute
the cutting boundary described in the following section.

4.2. Mesh segmentation approach

As our system needs real-time feedback to user’s interaction,
it is critical that the mesh segment approach should be fast

c© The Eurographics Association and Blackwell Publishing 2006.



Z.P. Ji, L.G. Liu, Z.G. Chen, & G.J. Wang / Easy Mesh Cutting

enough to generate the cutting boundary with very little de-
lay.

It is straightforward to think of using graph cut to do the
segmentation task inspired from the work of Lazy Snap-
ping [LSTS04]. Lazy Snapping adopts a graph cut algo-
rithm to generate the foreground object boundary by max-
imizing the color similarity inside the object. The system
is interactive as it is easy to compute the likelihood energy
in color space. But the graph cut on 3D mesh performs very
badly in computation time since it is time consuming to com-
pute the geodesic distance between every two points on the
mesh [KT03].

We apply a region growing based algorithm [WL97,
PKA03] for mesh segmentation in our system, which avoid
computing the geodesic distance between every two points
on the mesh. The main difference between various algo-
rithms which use region growing is in the criteria which de-
termines if an element can be added to an existing cluster.
We use the improved isophotic metric as a distance mea-
surement between two adjacent points on the mesh. As we
have seen that the isophotic metric simplifies the definition
of local neighborhoods for shape detection. It also simplifies
the implementation of region growing algorithms. Region
growing based on this feature sensitive metric can easily be
stopped at features on the mesh.

The region growing algorithm starts with different seed
vertices from marker sketches simultaneously and grows
several sub-meshes according to the improved isophotic
metric incrementally.

Every mesh vertex on (or near) the input sketches is la-
belled as "F" (foreground part) or "B" (background part)
and all other vertices are labelled "U" (unknown). For each
unknown vertexv, we define a triplet(v,m,d) whered is
the improved isophotic distance betweenv and the nearest
marked vertexv∗ ∈ N andm is the marking label ofv∗. A
queueQ is defined as a set of triplets and is initialized as
empty. The vertex that has the minimum valued in Q is se-
lected and labelled by its markerm. Then it is removed from
Q but its neighboring vertices with label "U" are updated and
added toQ. This process continues until all the vertices are
labelled as "F" or "B".

We summarize the steps of our approach as following:

Input: Triangular meshM and foreground and background
sketches on the mesh.

Output: Foreground part and background part of the mesh.

Step 1. Label each vertex on foreground and background
sketches as "F" and "B" respectively. SetQ = Φ. DenoteN
the set of labelled "F" or "B".

Step 2.For each vertex inN, add the triplet of its nearest (by
improved isophotic distance) vertex inNc into Q.

Step 3.SortQ by valued.

Step 4.Find minimumdmin of (v,m,d) in Q, labelv asm,
setQ = Q−{(vmin,mmin,dmin)} and setN = N∪{v}.
Step 5.Repeat Step 2 to Step 4 until all the vertices are la-
belled as "F" or "B".

Note that it is straightforward to extend the above algo-
rithm to segmentation according to more than two marker
sketch specifications.

4.3. Preprocessing

In order to make the overall cutting process faster for very
large meshes, we perform the cutting process over the sim-
plified meshes. In our system, the simplification [GH97] is
done before the user begins to navigate it and place sketches.
After the user specifies the hints to some foreground and
background regions on the model, our system separates
background and foreground regions using region growing
segmentation approach on the simplified mesh. Results from
this are used to achieve the final segmentation on the origi-
nal model using the hierachical correspondence between the
simplified mesh and the original mesh.

5. Cutting boundary optimization

As the vertices and edges of cutting boundary are con-
strained to lie on the mesh vertices and edges, the above ap-
proach might generate jaggy boundaries between the compo-
nents. We provide both automatic and manual mechanisms
to optimize the cutting lines to avoid jaggy boundaries.

5.1. Boundary refinement by snake

The snake was originally developed to find features in im-
ages [KWT88] in which curves moving in a domain are
calledsnakesbecause they move like snakes.

In our system, the cutting boundaries are considered as
snakes on the mesh and can be refined by snake movements.
Early attempts for moving snakes on 3D meshes suffered
from the parameterizaiton artifacts [LL02]. For the sake of
real-time snake movements, we introduce a modified method
to move snakes directly and quickly on 3D mesh based on
the parameterization free active contour models presented
in [BK04].

We represent a snake by a polygonS on a 3D triangular
mesh and the snake vertices are calledsnaxels(snake ele-
ments), see Figure2(a). To guarantee that the snake is ac-
tually embedded on the underlying mesh, we enforce two
consistency constraints on the snaxels: the snaxels have to
be on mesh vertices (called vertex snaxels) or lie on mesh
edges (called edge snaxels) and the segments of the snake
have to lie in the interior of triangles.

The movement of the snaxelvi is governed by the energy
which is defined as:

Esnake(vi) = Eint(vi)∗Eext(vi).

c© The Eurographics Association and Blackwell Publishing 2006.



Z.P. Ji, L.G. Liu, Z.G. Chen, & G.J. Wang / Easy Mesh Cutting
 

 
 
 

( )a ( )b ( )c

( )d ( )e ( )f

Figure 2: Snakes on 3D mesh. (a) Snake (with red vertices and green edges) on 3D mesh (with blue vertices and black edges);
(b) internal energy computation at a vertex snaxel; (c) internal energy computation at an edge snaxel; (d) one vertex snaxel is
split into two edge snaxels; (e) one vertex snaxel slides along its underlying edge; (f) one redundant snaxel is removed.

The internal energy at snaxelvi is defined as

Eint(vi) = θ,

whereθ ∈ [0,π] is the angle between the projection lines of
its adjacent snake edges over the tangent plane atvi , see Fig-
ure2(b) and (c). The external energy at snaxelvi is defined
as

Eext(vi) = |kmin(vi)|+ |kmax(vi)| ,

wherekmin(vi) andkmax(vi) are the two principal curvature
at vi . It can be seen that increasing the internal energy of
the snake makes it smooth and the purpose of the external
energy is to attract the snake to sharp features on the mesh.

There are three operations, including snaxel splitting,
snaxel sliding, and snaxel removal, on snaxels during the
evolution of snakes. When a snaxel runs into a mesh vertex,
it is split into several new snaxels that are put on the out-
going edges, see Figure2(d). The snaxels move along their
supporting edges to increase its energy, see Figure2(e). No
two consecutive snake segments should lie in the same tri-
angle. Snaxels adjacent to two such segments can iteratively
be removed, see Figure2(f).

We adopt a greedy algorithm to maximize the snake en-
ergy by operating the above three operations in an iterative
way. The refinement iteration is fast enough for real-time re-
fining at cutting boundaries in our system. Figure3shows an
example to illustrate the effect of refining the cutting bound-
ary using our snake technique where the original cutting
boundary lines in blue are jaggy whereas the refined bound-
ary lines in green are smoother after snake optimization.

 

 

   
 

( )a ( )b ( )c

Figure 3: Illustration of snake refinement. The original cut-
ting boundary lines are shown in blue and the refined bound-
ary lines after snake optimization are shown in green. (a),(b)
are different views for the cutting boundary; (c) is the zoom-
in view of part of (b).

5.2. Boundary editing by users

Although the step of region growing with a feature sensi-
tive metric preserves the cutting boundary as accurately as
possible and the step of snake optimization refines the cut-
ting boundary as smooth as possible, there still exist un-
wanted edges or errors in the cutting boundary between the
component, especially around ambiguous and non-feature
boundaries. Therefore, we provide two simple polygon edit-
ing tools for the user to modify the cutting boundary as
in [LSTS04].

First, the user can directly drag the vertex over the mesh to
adjust the shape of the cutting boundary. Users can also add
or remove vertices by simple mouse clicks. Second, the user
can draw freehand strokes to replace a segment of the cutting
boundary. The vertices on the boundary are recomputed by

c© The Eurographics Association and Blackwell Publishing 2006.



Z.P. Ji, L.G. Liu, Z.G. Chen, & G.J. Wang / Easy Mesh Cutting
 

 
   
 

( )a ( )b ( )c

Figure 4: Overriding brush editing of cutting boundary. (a)
The cutting boundary is jaggy; (b) the user draws a short
stroke in yellow near the cutting boundary; (c) the modified
boundary.

fitting the shape of user’s input stroke. This tool can modify
multiple vertices at one time and is more efficient. Note that
the user can also adjust viewing angles to get the best editing
position for a particular object during the boundary editing.

In Figure 4(a), the cutting boundary is jaggy. The user
draws a short stroke in yellow near the boundary, see Fig-
ure4(b). The modified boundary by fitting the shape of the
stroke is shown in Figure4(c).

6. Experimental results

We show some of examples illustrating the applicability and
flexibility of our Easy Mesh Cutting approach in this section.
All the examples presented in this paper were made on a
3GHz Pentium IV computer with 1G memory. The model is
first uniformly scaled into one with a unit bounding box in
our system.

The weight parametersω and ω∗ used in the improved
isophotic metric measure the importance of normal varia-
tion and curvature variation respectively. It is worthwhile to
point out that the two parameters are important for comput-
ing the isophotic distance which will affact the mesh cutting
results. The segmentation is acutally computed according to
the minima rule ifω∗ is set to be large enough. We setω = 5
andω∗ = 5 in our system, which have performed well for all
the examples shown in our paper.

Figure1 shows two cutting examples produced in our sys-
tem. The bunny head (a) and dog body (b) are cut out by sim-
ply drawing two sketches on the models respectively. The
sketches for specifying foreground and background parts are
shown in green and red respectively. The cutting foreground
parts are shown in pink.

Figure5 illustrates some examples produced in our easy
mesh cutting system. In Figure5(a), the user can cut a pro-
trusive cube into different components by specifying differ-
ent sketches according to his intension. One green stroke and

two red strokes are specified in the middle example of Fig-
ure5(a), while only one green stroke and one red stroke are
specified in the rightmost example of Figure5(a).

Our approach works well for meshes with various sizes
of features. In Figure5(b), the ear part and the eye part on
a head model are easily cut out by drawing two sketches
respectively. We use couples of overriding strokes to editing
the cutting boundaries to get better results.

Figure 5(c) shows an example of cutting a high genus
component from a model. The user uses two sketches to
cutout the tail part with a hole inside from the feline
model. Our approach can cutout high-genus components
well, which benefits from the region growing algorithm.

Our system can also work well for foreground parts on
background surface with much noise. In Figure5(d), we
quickly cut out the relief dragon from a noisy background
surface by drawing several strokes. Note that the boundary
of the relief dragon is perceptually unclear but our approach
has obtained a satisfactory result.

It is worthwhile to point out that it is rather difficult to
cut out the subparts shown in Figure5(b,c,d) using intelli-
gent scissors [FKS∗04, LLS∗05] as the cutting boundaries
in these cases can not be computed by intersecting a slicing
plane with the underlying meshes. Furthermore, the cutting
results by our system are view independent as we use the
geometric properties of the mesh in our approach.

From our experience on using the easy mesh cutting sys-
tem, users can simply select an interesting part in the model
by intuitively and simply drawing freehand sketches on the
model. Thanks to ease of manipulation proposed sketch-
based interface is suitable both for experienced users and
unskilled users (e.g. children) who wish to create new mod-
els in the style of masters.

Table 1 lists the running time of some of the mesh cut-
ting examples shown in this paper. The meshes in these ex-
amples are not simplified for computing the running time.
It takes less than 0.2 second to cut a mesh with over 10k
vertices. For large mesh the system first simplifies it into a
simplified mesh model with number of vertices smaller than
10k in a short time. As we can see, our approach achieves
a good combination of speed, cutting quality, and good user
experience.

Model Vertex Number Running Time (s)

Hand (Fig. 4) 4,991 0.078
Dog (Fig. 1) 10,000 0.172
Horse (Fig.8) 19,851 0.297
Bunny (Fig. 1) 34,835 0.594
Triceratops (Fig.8) 40,706 0.656

Table 1: Running time for different examples shown in the
paper.

c© The Eurographics Association and Blackwell Publishing 2006.



Z.P. Ji, L.G. Liu, Z.G. Chen, & G.J. Wang / Easy Mesh Cutting 

 

   
 
 

( )a ( )b

( )c ( )d

Figure 5: More mesh cutting examples produced in our easy mesh cutting system. (a) cutting a protrusive cube: user selects one
face or the whole cube by different sketches; (b) cutting eye and ear components from a head model; (c) cutting a high genus
tail part from feline model; (d) cutting the relief dragon model from a noisy background.

6.1. Applications

We illustrate a couple of applications based on our easy mesh
cutting framework for geometry processing.

Easy Mesh Cutting provides an intuitive interface for
component-based mesh editing by drawing sketches in the
image plane. Figure6 shows a simple example of our system
in action. The user begins by drawing a foreground sketch
along the leg and a background sketch along the body on the
feline model, shown in Figure6(a). The leg is then selected
and shown in pink. The user then draws a target curve in light
blue indicating the desired deformation (Figure6(b)). From
the foreground sketch and target curve, the system automat-
ically generates the deformation of the leg. We adopt a sim-
ilar approach based on detail preserving deformation tech-
nique [NSACO05] to compute the vertex coordinates of the
selected component by adding soft constraints on vertices
on the component boundary and vertices on the sketch. A
more complex editing example is shown in Figure7. The de-
formed dinosaur model shown in Figure7(b) is edited from
the original model shown in Figure7(a) by 6 individual de-
formations.

Merging meshes to assemble a new object is another im-
portant application of our framework. We use our framework
to cut different parts of models from different models and
then merge them into one new model [FKS∗04]. The partial
meshes are merged at their open (mesh) boundaries using the

 

 
 
 

( )a ( )b ( )c

Figure 6: A simple sketch-based mesh editing. (a) The user
selects the leg of feline by drawing a green foreground sketch
and red background sketch; (b) The user draws a target
sketch along the leg; (c) The foreground sketch and the target
sketch induce a deformation of the leg.

Poisson approach [YZX∗04]. In Figure1, the bunny head is
cut from bunny model (Figure1(a)) and the dog body is cut
from dog model (Figure1(b)) and then they are merged into
a new model shown in Figure1(c). The bunny body and the
dog head can also be merged into another new model shown
in Figure1(d). A more complicated mesh merging example
is shown in Figure8. Here we cut the head from a tricer-
atops model, the body from a horse model, the wings from
lucy model, and the tail from a dinosaur model, respectively
using the easy mesh cutting tool in our system. Then these

c© The Eurographics Association and Blackwell Publishing 2006.



Z.P. Ji, L.G. Liu, Z.G. Chen, & G.J. Wang / Easy Mesh Cutting
 

 
 
 

( )a ( )b

Figure 7: The dinosaur model in (b) is edited from (a) by 6
individual deformations.

 

 
   
 

Figure 8: A complicated mesh merging example.

cut components are merged into an unknown mythical crea-
ture.

The accompanying video shows how our system work on
mesh cutting, mesh component editing, and mesh compo-
nents merging.

7. Conclusions

We present a novel method for cutting out meaningful com-
ponents from meshes using simple sketches that are drawn
in the image plane. The freehand strokes roughly mark out
parts of interest and the background. Our system then seg-
ments the regions of interest in real time. The cutting bound-
ary can be optimized automatically. The system also pro-
vides flexible tools for users to edit the boundary. Our easy
mesh cutting approach is beneficial for interactive graphics
applications.

The presented approach still has much room for im-
provements and extensions. The shape of sketches should
be investigated to guide the perceptual decomposition
combining with the skeleton of the mesh. It is also worth-
while to improve the graph cut algorithm and use it in the

sketch-based mesh cutting system. We believe that this
extension is feasible but not straightforward.

Acknowledgement. We would like to thank Mr. Lei
Zhang for his help in video production. This work is
supported by Zhejiang Provincial Natural Science Foun-
dation of China (No. Y105159), National Natural Science
Foundation of China (No. 60503067, 60333010), and the
National Grand Fundamental Research 973 Program of
China (No. 2002CB312101).

References

[Bie87] BIEDERMAN I.: Recognition-by components: A
theory of human image understanding.Psychological Re-
view 94, 2 (1987), 115–147.

[BK04] BISCHOFF S., KOBBELT L.: Parameterization-
free active contour models.The Visual Computer 20
(2004), 217–228.

[FKS∗04] FUNKHOUSER T., KAZHDAN M., SHILANE

P., MIN P., KIEFER W., TAL A., RUSINKIEWICZ S.,
DOBKIN D.: Modeling by example. InProc. of SIG-
GRAPH(2004), pp. 652–663.

[GCO06] GAL R., COHEN-OR D.: Salient geometric fea-
tures for partial shape matching and similarity.ACM
Trans. Graph. 25, 1 (2006), 130–150.

[GH97] GARLAND M., HECKBERT P.: Surface simplifi-
cation using quadric error bounds. InProc. of Siggraph
(1997), pp. 209–216.

[HR84] HOFFMAN D., RICHARDS W.: Parts of recogni-
tion. Cognition 18(1984), 65–96.

[HS97] HOFFMAN D., SIGNH M.: Salience of visual
parts.Cognition 63(1997), 29–78.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.:
Teddy: A sketching interface for 3D freeform design. In
Proc. of Siggraph(1999), pp. 409–416.

[KG05] KHO Y., GARLAND M.: Sketching mesh defor-
mations. InProc. of the ACM Symposium on Interactive
3D Graphics(2005), pp. 147–154.

[KT03] KATZ S., TAL A.: Hierarchical mesh decompo-
sition using fuzzy clustering and cuts. InProc. of SIG-
GRAPH(2003), pp. 954–961.

[KWT88] KASS M., WITKIN A., TERZOPOULOS D.:
Snakes: Active contour models.International Journal of
Computer Vision 1, 4 (1988), 321–331.

[LL02] LEE Y., LEE S.: Geometric snakes for triangular
meshes. InProc. of Eurographics(2002), pp. 229–238.

[LLS∗05] LEE Y., LEE S., SHAMIR A., COHEN-OR D.,
SEIDEL H.-P.: Mesh scissoring with minima rule and part
salience.Computer Aided Geometric Design 22, 5 (2005),
444–465.

c© The Eurographics Association and Blackwell Publishing 2006.



Z.P. Ji, L.G. Liu, Z.G. Chen, & G.J. Wang / Easy Mesh Cutting

[LPRM02] LEVY B., PETITJEAN S., RAY N., MAILLOT

J.: Least squares conformal maps for automatic texture
atlas generation. InProc. of Siggraph(2002), pp. 362–
371.

[LSTS04] L I Y., SUN J., TANG C.-K., SHUM H.-Y.:
Lazy snapping. InProc. of SIGGRAPH(2004), pp. 303–
308.

[MW99] MANGAN A., WHITAKER R.: Partitioning 3D
surface meshes using watershed segmentation.IEEE
Transactions on Visualization and Computer Graphics 5,
4 (1999), 308–321.

[NSACO05] NEALEN A., SORKINE O., ALEXA M.,
COHEN-OR D.: A sketch-based interface for detail-
preserving mesh editing. InProc. of Siggraph(2005),
pp. 1142–1147.

[PKA03] PAGE D., KOSCHANA., ABIDI M.: Perception-
based 3D triangle mesh segmentation using fast marching
watersheds. InProc. of IEEE Computer Vision and Pat-
tern Recognition(Volume II)(2003), pp. 27–32.

[PLH∗05] POTTMANN H., LEOPOLDSEDERS., HOFER

M., STEINER T., WANG W.: Industrial geometry: recent
advances and applications in CAD.Computer-Aided De-
sign 37(2005), 751–766.

[PSH∗04] POTTMANN H., STEINER T., HOFER M.,
HAIDER C., A.HANBURY: The isophotic metric and its
application to feature sensitive morphology on surfaces.
In Proc. of ECCV (Part IV)(2004), pp. 560–572.

[TA01] TAN K., AHUJA N.: Selecting objects with free-
hand sketches. InProc. of CVPR(2001).

[Tau95] TAUBIN G.: Estimating the tensor of curvature of
a surface from a polyhedral approximation. InProc. of
ICCV (1995), pp. 902–907.

[WL97] WU K., LEVINE M.: 3D part segmentation using
simulated electrical charge distributions.IEEE transac-
tions on pattern analysis and machine intelligence 19, 11
(1997), 1223–1235.

[YLL ∗05] YAMAUCHIY H., LEE S., LEE Y., OHTAKE

Y., BELYAEVY A., SEIDEL H.-P.: Feature sensitive mesh
segmentation with mean shift. InProc. of Shape Modeling
International(2005), pp. 236–243.

[YZX ∗04] YU Y., ZHOU K., XU D., SHI X., BAO H.,
GUO B., SHUM H.-Y.: Mesh editing with Poisson-based
gradient field manipulation. InProc. of Siggraph(2004),
pp. 644–651.

c© The Eurographics Association and Blackwell Publishing 2006.


