
Interpolatory Curve Modeling with Feature Points Control

Zhonggui Chena, Jinxin Huangb,c, Juan Caob,c,∗, Yongjie Jessica Zhangd

aDepartment of Computer Science, Xiamen University, Xiamen, 361000, China
bSchool of Mathematical Sciences, Xiamen University, Xiamen, 361005, China

cFujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation,
Xiamen University, Xiamen, 361005, China

dDepartment of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

In curve modeling, interpolation allows users to directly control the location of curve features. While previous literatures have focused
on generating interpolatory curves with properties of smoothness and locality, they usually have difficulty in controlling over geometric
feature points (e.g., cusps, loops, and inflection points) that mark salient intrinsic features of curve shapes. In this paper, we propose
an intuitive and efficient method for constructing planar cubic curves that are curvature continuous almost-everywhere and interpolate
a sequence of input data points. Our method provides a good control over the location and type of the geometric feature points. In
particular, cusps and loops only occur at specified input data points, while inflection points only occur at specified input data points
and joints. We refer to such feature points controlled interpolatory curves as FPC-Curves for short. To construct FPC-Curves, we
focus on piecewise cubic curves, where the occurrence of loops, cusps and inflection points is mutually exclusive. We also provide
a simple yet efficient algorithm for real-time interactive design of cubic FPC-Curves. Various experimental results show the efficacy
and flexibility of our new approach for curve modeling.

Keywords: Interpolation, feature points, curve modeling.

1. Introduction

Planar curve modeling has wide-range applications in geomet-
ric design, including computer graphics, animation, computer
aided geometric design, and computer numerical control. There
are basically three techniques for planar curve modeling: interpo-
lation, approximation and direct manipulation of Bézier/B-spline
control points. Among them, interpolation is a popular tech-
nique through a sequence of relatively sparse data points. These
data points are input from designers for resulting shape control.
The most important advantage of interpolation over the other two
methods is its direct association between the input and the result-
ing curves. In the literature, people focus on different properties
of interpolating curves, such as fairness, extensionality, mono-
tone curvature and locality.

In this paper, we focus on constructing smooth 2D curves
controlled by salient geometric feature points (including cusps,
loops, and inflection points) through a given set of sparse data
points. Each resulting curve segment will pass through a given
data point, where the data point becomes a cusp, a loop, an in-
flection point or a regular point as pre-specified. We refer to such
feature points controlled interpolatory curves as FPC-Curves for
short. This design task domain is quite different from the prob-
lem arising from reverse engineering and computer numerical
control, where the curves with cusps, inflection points, and loops
should be avoided. The primary application envisioned for our
work is more for artistic design, where geometric feature points
marking salient intrinsic features are desired; see Figure 1.

We should point out that salient geometric feature points can
also be created by previous interpolation methods. However, it is
usually less-intuitive and labor intensive for users to control the

∗Corresponding author
Email address: juancao@xmu.edu.cn (Juan Cao)

Cusp Loop Inflection point Regular point End point

Figure 1: Our method constructs cubic FPC-Curves (top row) that are G2 con-
tinuous almost everywhere and interpolate sequences of input geometric feature
points (bottom row).

location of feature points, and it may introduce unwanted cusps
or loops; see Figure 2. In this paper, we propose to create inter-
polatory FPC-Curves using cubic Bézier segments, where each
segment contains at most one interior feature point at the user-
specified position. Our method creates a concatenation of cubic
Bézier curves joining G2 continuously almost everywhere except
at joints with sign change curvature, where curves are G1 contin-
uous. Differing from most applications in CAD, where G2 conti-
nuity is usually desired, the G1 continuity of our FPC-Curves is

Preprint submitted to Elsevier June 10, 2019

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) (b) (c) (d)

Figure 2: Comparison of our FPC-Curves with other interpolatory curves in modeling loops. (a) C2 interpolatory cubic B-spline [1], which creates a small loop away
from the input data points; (b) cubic Bézier curves interpolating 6 regular points generated by our method; (c) interpolatory quadratic Bézier curves [2], where at least
5 input data points are needed to create two loops, and it is hard to control the location of loops; (d) our FPC-Curve, where only 3 control points are needed to model
two loops that occur at two input data points (green circles). Orange squares and green circles denote the input data points.

good enough for artistic design. In particular, the specific contri-
butions of this paper are as follows:

1. We propose an intuitive and efficient method for construct-
ing cubic FPC-Curves that are G2 continuous almost every-
where and interpolate a sequence of control points. This
method provides a good control over the location and type
of the geometric feature points. In particular, cusps and
loops only occur at control points, while inflection points
only occur at control points and joints.

2. We tailor an iterative optimization algorithm to achieve the
real-time interactive design. To create interpolatory curves
with satisfying properties, we focus on cubic Bézier seg-
ments, which are the lowest degree polynomial curves that
take on loops, cusps, or inflection points within a single seg-
ment. We study the geometric conditions for cubic curves
(having loops, cusps, or inflection points) and G2 continuity,
based on which we provide a simple yet efficient optimiza-
tion framework that creates desired FPC-Curves.

The remainder of this paper is organized as follows. Section 2
reviews the related work. The geometric constraints for a para-
metric cubic curve taking on a loop, cusp, or inflection points,
and G2 continuous constraints are studied in Section 3. Section 4
presents the algorithm and implementation for our interpolatory
FPC-Curve construction. Results and discussion are presented in
Section 5. Finally, in Section 6 conclusions and future work are
proposed.

2. Related work

A large number of spline interpolation methods have been de-
veloped for constructing planar curves from a sequence of input
data points. A comprehensive survey is given by [3]; we only
focus on the most relevant previous work here.

The properties desired for planar interpolating splines may
vary in different applications. Fairness or smoothness is gener-
ally the most important property in almost all applications. One
way to generate smooth splines is to optimize metrics that cor-
relate reasonable wellness with the perception of fairness, e.g.,
the total bending energy stored in the spline [4]. This approach
may compromise with other important properties, such as local-
ity, roundness and stability [5]. Another way to create smooth
splines is to impose constraints on the degree of continuity, a con-
crete property that relates to the fairness. The continuity can be
evaluated either parametrically or geometrically [6], correspond-
ing to Ck and Gk, respectively. Although continuity is not the
same as fairness, there is a widespread agreement that the higher
degree of continuity a curve possesses, the fairer the curve looks.

In practice, C2 or G2 (curvature continuity) is demanded for a
fair spline. Piecewise quadratic splines [7], cubic splines [1, 8]
or even subdivision curves [9] are usually exploited in the inter-
polatory curve construction to achieve C2 or G2 continuity. How-
ever, these curves either introduce unexpected cusps/loops away
from control points or have difficulty in controlling the location
and type of feature points.

Curvature is also an objective mathematical property that is
intimately tied to fairness. Some literature focus on generat-
ing curves with minimum curvature variation, e.g., minimum
variation curves (MVCs). Most MVCs are constructed by ap-
proximation, such as using quantic polynomials [10]. Curvature
plot consisting of relatively few monotone pieces is considered
to be another fairness metric [11]. As minima and maxima of
curvature are also argued to be salient features, it is suggested
that all curvature extrema should coincide with the given data
points in the interpolation [1]. A fair amount of literature ad-
dresses the problem of constraining curves to have monotone cur-
vatures, e.g., Logarithmic spirals [12], Euler spirals (also known
as Clothoids or Cornu spirals) [13] and class A curves [14, 15].
These curves can be adopted in data interpolation such that cur-
vature of in-between spline segments varies monotonously. As
monotone curvature segments are not as flexible as the usual
Bézier/B-spline curves, it is not easy to manipulate them. Piece-
wise quadratic curves are used in interpolating control points
with local maxima of curvature only at the input data points [2].
Since these curves are free of cusps, loops and inflection points
in the interior of each segment, modeling feature points at control
points is less intuitive and labor-intensive in the sense that more
data points are needed; see Figure 2(c-d).

In interactive artistic design of fair curves, the number, lo-
cation, and type of feature points that mark the salient shape
features are required by the designer. Hence, it is reasonable
to expect the designer to place these points first, and then the
splines accommodate the designer’s requirements by preserving
these feature points. The lack of easy control of feature points
inspires us to provide a method for constructing aesthetic curves
with a good control over feature points. To achieve this goal,
we adopt cubic Bézier curves, which are of the lowest degree
to have interior cusps, loops, or inflection points. These curves
have limited diversity of their characterizations. That is to say, a
non-degenerate parametric cubic curve can have a cusp, a loop,
or zero to two inflection points, and their occurrence is mutually
exclusive [16, 17]. There are several methods for determining
whether a parametric cubic curve has any loops, cusps, or in-
flection points. For instance, an algorithm based on algebraic
properties of polynomial coefficients [16] was developed, where
some geometric tests using B-spline control polygons were also
included. In [17] and [18], geometric methods were presented for

2

determining whether a cubic curve has any loops, cusps, or in-
flection points. By considering the position of one control point,
the method in [18] is simpler and more instructive, which ana-
lyzes the lengths of tangent vectors at the ends. Our analysis of
geometric constraints is based on [18].

3. Geometric constraints

For interpolatory curves, here we clarify the required geomet-
ric properties and discuss their corresponding geometric condi-
tions. Given a sequence of data points vvvi ∈ R

2, i = 1, · · · ,N, with
specified types (including cusps, loops, inflection points, and reg-
ular points), we construct a curvature continuous (G2 continuous)
FPC-Curve that interpolates vvvi and satisfies the following two
requirements: (1) each curve segment interpolates one point vvvi,
and the interpolated point vvvi becomes a point on the curve with
a specified type; and (2) cusps and local loops occur only at the
given points and inflection points occur only at the given points
or at joints. This is based on the assumption that cusps, loops, in-
flection points are salient feature points of a curve that should be
directly controlled by the user. To make our interpolation more
versatile in modeling shapes, we allow the curve segment to in-
terpolate a regular point without introducing any feature points
in that segment. We focus on cubic Bézier curves and assume to
construct a closed curve in the rest of this section. Construction
of open curves will be discussed in Section 4. We first recall how
to determine if a parametric cubic curve has any feature points.
In this paper, we use the term feature points to refer to the loops,
cusps, or inflection points. Then we study the geometric condi-
tions for a single Bézier segment to interpolate at a feature point
or a regular point. Finally, we study the conditions for piecing
together these curve segments to be curvature continuous.

3.1. Geometric characterization of parametric cubic curves
A number of previous literatures have investigated the con-

ditions for parametric curves to have any feature points. In this
section, we recall the results for parametric cubic curves. To ease
the later discussion, we use the general representation of a planar
parametric cubic curve QQQ(t):

QQQ(t) = (x(t), y(t)) =

3∑
j=0

PPP jt j, (1)

where PPP j ∈ R
2, x(t) and y(t) are cubic polynomials with deriva-

tives QQQ′(t) = (x′(t), y′(t)) and QQQ′′(t) = (x′′(t), y′′(t)). The signed
curvature of the curve (1) is given by

κ(t) =
x′(t)y′′(t) − x′′(t)y′(t)

(x′(t)2 + y′(t)2)
3
2

.

The numerator is actually a quadratic function, which can be de-
noted by

x′(t)y′′(t) − x′′(t)y′(t) = 2F(t) = 2(At2 + Bt + C),

where A = 3 det(PPP2,PPP3), B = 3 det(PPP1,PPP3) and C = det(PPP1,PPP2).
Note that, F(t) is proportional to the signed curvature of the
curve.

It has been shown that a non-degenerate (i.e., the control points
are not collinear or coincident) parametric cubic curve can only
have a cusp, a loop, or up to two inflection points, and the pres-
ence of loops, cusps or inflection points is mutually exclusive.

In particular, whether a cubic curve has any cusps, loops, or in-
flection points can be entirely determined from the discriminant
∆ = B2 − 4AC of F(t) as follows [16, 17]. If A = 0, there is
exactly one inflection point. Otherwise,

• if ∆ > 0, there are exactly two inflection points;

• if ∆ < 0, there is a loop;

• if ∆ = 0, there is a cusp.

3.2. Interpolation of cubic Bézier curves at feature points
Like many interpolation methods, we adopt planar cubic

Bézier curves. A cubic Bézier is defined as a linear combina-
tion of four control points and basis functions:

QQQ(t) =

3∑
i=0

di(t)QQQi, t ∈ [0, 1], (2)

where QQQi are the control points and di = 3!
i!(3−i)! t

i(1 − t)3−i are the
basis functions. We can always convert a cubic Bézier curve to
the general representation (1), where the control points can be
computed as

PPP0
PPP1
PPP2
PPP3

 =


1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1




QQQ0
QQQ1
QQQ2
QQQ3

 .
In other words, the cubic Bézier curve is a segment (correspond-
ing to the parametric interval [0, 1]) of the general cubic curve
(1) with control points defined above. Note that, PPP0 in the gen-
eral form coincides with the control point QQQ0 in the Bézier form.
The cubic Bézier curve (1) interpolates vvv = (x, y) at a specified
parameter t∗ ∈ (0, 1) satisfying

QQQ(t∗) = PPP3t∗3 + PPP2t∗2 + PPP1t∗ + PPP0 = vvv. (3)

In the following, we will discuss the additional geometric con-
ditions for a cubic Bézier curve (2) interpolating vvv such that vvv
becomes either a cusp, a loop, an inflection point, or a regular
point without introducing any other feature points on the curve
segment. Note that in Section 3.1, the conditions for a cubic
curve presenting feature points are determined without restrict-
ing the range of parameter t. Here, we adapt the results to the
Bézier representation by restricting t to [0, 1]. Let us first assume
A , 0. We defer discussing the case of A = 0 until Section 4.

Cusp. A general cubic curve (1) has a cusp if and only if

∆ = B2 − 4AC = 0. (4)

If we assign a value t∗ ∈ (0, 1) to the parameter of a cusp, then t∗
should also be the root of F(t). We have

t∗ =
−B
2A

, (5)

where A, B satisfy Eq. (4). Conditions (4-5) lead to (see Ap-
pendix A.1 for a more detailed discussion):

3PPP3t∗2 + 2PPP2t∗ + PPP1 = 0. (6)

Loop. Instead of enforcing the condition ∆ < 0, we could en-
force a more direct and intuitive condition on the cubic Bézier
curve such that it takes a loop. A cubic Bézier curve with a loop

3

means that there are two coincident points on the curve with dif-
ferent parameters, for example t∗1, t

∗
2 ∈ (0, 1) with t∗1 , t∗2. Let the

cubic curve interpolate the given data vvv at the loop, then we have

PPP3t∗1
3

+ PPP2t∗1
2

+ PPP1t∗1 + PPP0 = vvv (7)

and
PPP3t∗2

3
+ PPP2t∗2

2
+ PPP1t∗2 + PPP0 = vvv. (8)

Inflection point. If ∆ > 0, the parabola described by F(t) has
two roots symmetric around t = − B

2A , both of which correspond
to the parameters of the inflection points. We specify one root as
t∗ ∈ (0, 1),

F(t∗) = 0, (9)

and introduce a parameter h such that

t∗ + h = −
B

2A
, (10)

where h is restricted to (−∞,− t∗
2) ∪ (1−t∗

2 ,+∞). Then the second
root of F(t) can be guaranteed to be outside the parametric do-
main [0, 1]. Intuitively, |h| is half of the distance between the pair
of roots, which can be used to adjust the shapes of the parabola
and the final curve segment. Conditions (9-10) lead to a linear
equation (see Appendix A.2 for a more detailed discussion):

3(t∗2 + 2ht∗)PPP3 + 2(t∗ + h)PPP2 + PPP1 = 0. (11)

Regular point. A general cubic parametric curve (1) has ei-
ther a cusp, a loop or up to two inflection points. Note that, a
cubic Bézier curve (2) is part of a general cubic curve (1) with
the parametric domain restricted to [0, 1]. Hence, a cubic Bézier
curve can have zero, one, or two inflection points, depending
on whether the two distinct roots of F(t) fall within the interval
[0, 1]. We obtain a regular cubic Bézier curve by enforcing the
general curve to have two inflection points, both of which lie out-
side of [0, 1]. To achieve this goal, we enforce that the quadratic
function F(t) has one root at −1, i.e.,

F(−1) = A − B + C = 0, (12)

and the symmetry axis t = −B/2A of the corresponding parabola
is in-between t = 0 and t = 1. We also enforce that the curve in-
terpolates the point vvv at the parameter corresponding to the sym-
metry axis, i.e.,

t∗ = −
B

2A
, (13)

where A and B satisfy Eq. (12). Conditions (12-13) lead to the
following linear equation (see Appendix A.3 for a more detailed
discussion):

3(1 + 2t∗)PPP3 − 2t∗PPP2 − PPP1 = 0. (14)

3.3. Geometric conditions for curvature continuity
We have discussed a single cubic Bézier segment for inter-

polating a point where the interpolated point becomes a cusp, a
loop, an inflection point, or a regular point of the curve. In this
section, we aim to piece these segments together to form a cur-
vature continuous curve.

Assume there are N connected curve segments referred in the
interpolation. Hereinafter, if a symbol carries two subscripts sep-
arated by a comma, then the first subscript represents the index
of a curve segment, and the second subscript indicates the index
of control points in that curve segment. For instance, we denote

Qi,1

Qi,2 Qi,3
Qi+1,1

Qi+1,2

Qi+1,3

=Qi+1,0
Qi,2

Qi,0

(= Qi+1,1)

Figure 3: Conditions for G1 continuity.

N cubic Bézier curves by QQQi(t) (i = 1, ...,N) with control points
{QQQi,0, ...,QQQi,3}, where QQQi, j means the jth control point of the ith
curve segment. Moreover, the first subscript i is taken modulo N,
if i > N.

Two sequential curve segments QQQi(t) and QQQi+1(t) meet with
G2 continuity if and only if they have a common end point, i.e.,
QQQi,3 = QQQi+1,0 = PPPi+1,0 (G0 continuity, where PPPi+1,0 is the joint), a
common unit tangent vector (G1 continuity), i.e., QQQi,3(= QQQi+1,0),
QQQi,2 and QQQi+1,1 are collinear, and coinciding curvatures, i.e.,
κi(1) = κi+1(0) [1]. The conditions for G1 continuity can be
equivalently written as

QQQi,3 = QQQi+1,0 =
1

λi + 1
QQQi,2 +

λi

λi + 1
QQQi+1,1,

where λi =
‖QQQi,2QQQi,3‖

‖QQQi+1,0QQQi+1,1‖
is the ratio between the lengths of control

legs adjacent to the joint QQQi,3(= QQQi+1,0); see Figure 3.

Let the general representation of QQQi(t) to be PPPi(t) =
3∑

j=0
PPPi, jt j,

then the conditions for G2 continuity can be described in terms
PPPi, j and λi. More precisely, G0 continuity requires

PPPi,0 + PPPi,1 + PPPi,2 + PPPi,3 = PPPi+1,0, (15)

and G1 continuity requires

3PPPi,0 + 2PPPi,1 + PPPi,2 − 3PPPi+1,0 = −PPPi+1,1λi. (16)

Substituting conditions (15-16) into κi(1) = κi+1(0) yields G2

continuity condition:

λi =

√√ ∣∣∣(PPPi,1 + 2PPPi,2 + 3PPPi,3) × (PPPi,2 + 3PPPi,3)
∣∣∣∣∣∣PPPi+1,2 × (3PPPi,0 + 2PPPi,1 + PPPi,2 − 3PPPi+1,0)
∣∣∣ . (17)

4. Optimization

While we have discussed geometric conditions for construct-
ing a single cubic Bézier segment that interpolates at a feature
point and piecing them together with G2 continuity, we aim to
provide an optimization method that generates curves satisfying
all these conditions. Let us first recall from Section 3 that the
conditions for each curve segment to have desired properties are:
interpolation condition (3); conditions for controlling over the
type of the interpolated points, i.e., (6) for a cusp, (8) for a loop
(in this case, (3) is replaced by (7)), (11) for an inflection point,
and (14) for a regular point; and conditions for G0 to G2 con-
tinuity (15-17). All these conditions form a non-linear system

4

with respect to the control points PPPi, j, which are difficult to solve
directly. We can observe that the first four conditions are linear
equations with respect to unknown control points, if the param-
eter t∗i , hi and λi are fixed. Instead of directly solving the non-
linear system, we therefore compute control points according to
the first four conditions to achieve G1 continuity, and then update
the ratio λi according to condition (17) to pursue curvature conti-
nuity. These two steps are alternatively applied until a terminate
condition is satisfied.

Let us consider a cubic Bézier segment QQQi(t) that is G1 con-
nected to the subsequent segment QQQi+1(t), and they interpolate at
cusps. Therefore, both segments should satisfy conditions (3),
(6), and (15-17). For the ith segment, we assume the parame-
ters t∗i and λi are constant, then the first four conditions are linear
equations with respect to the five unknowns PPPi,0,PPPi,1,PPPi,2,PPPi,3,
and PPPi+1,0. If we solve the first three equations (i.e., Eqs. (3), (6)
and (15)) for three unknowns PPPi,1, PPPi,2, and PPPi,3, we can represent
them as linear combinations of the joints PPPi,0 and PPPi+1,0:

PPPi,1 =
t∗i

2

(t∗i − 1)2 PPPi+1,0 −
t∗i + 2

t∗i
PPPi,0 −

3t∗i − 2
t∗i (t∗i − 1)2 vvvi,

PPPi,2 = −
2t∗i

(t∗i − 1)2 PPPi+1,0 +
2t∗i + 1

t∗i
2 PPPi,0 +

3t∗i
2 − 1

t∗i
2(t∗i − 1)2

vvvi,

PPPi,3 =
1

(t∗i − 1)2 PPPi+1,0 −
1

t∗i
2 PPPi,0 −

2t∗i − 1

t∗i
2(t∗i − 1)2

vvvi.

(18)

The middle control points of the (i + 1)th segment can be deter-
mined in a similar fashion. In particular,

PPPi+1,1 =
t∗2i+1

(t∗i+1 − 1)2 PPPi+2,0 −
t∗i+1 + 2

t∗i+1
PPPi+1,0 −

3t∗i+1 − 2
t∗i+1(t∗i+1 − 1)2 vvvi+1.

Simply substituting these solutions into Eq. (16), we obtain an
equation only related to the joints PPPi,0, PPPi+1,0, and PPPi+2,0:

(t∗i − 1)2

t∗2i

PPPi,0 −

(
t∗i − 3
t∗i − 1

+ λi
t∗i+1 + 2

t∗i+1

)
PPPi+1,0 + λi

t∗2i+1

(t∗i+1 − 1)2 PPPi+2,0

=
3t∗i − 1

t∗2i (t∗i − 1)
vvvi + λi

3t∗i+1 − 2
t∗i+1(t∗i+1 − 1)2 vvvi+1.

Conditions for two G1 connected segments where each seg-
ment interpolates at a feature point or a regular point can be de-
rived in the same fashion. In other words, each G1 connected
interpolating curve segment leads to a linear equation only with
respect to three joints of the form:

Ei,1PPPi,0 + Ei,2PPPi+1,0 + Ei,3PPPi+2,0 = CCCi, i = 1, ...,N, (19)

where Ei,1, Ei,2, Ei,3, and CCCi are determined by parameters t∗i , λi,
hi, vvvi, and the type of vvvi (see Appendix B). These equations form a
tridiagonal system, leading to a solution for the joints. Although
we cannot theoretically prove the uniqueness of the solution here,
we have never found a singular coefficient matrix of the linear
system (19) in all our experiments. Other control points which
can be represented as linear combinations of joints can also be
determined. Substituting the solution into the curvature continu-
ity condition (17) leads to an estimation for λi, and an update for
the linear system. We then repeat these control point solving and
λi estimation processes until convergence. The pseudo code of
our FPC-Curve optimization method is shown in Algorithm 1.

Note that, to achieve G2 continuity at a joint with opposite cur-
vature vectors, the curvature at that joint must be zero. Theoret-
ically, if a cubic parametric curve has a cusp or a loop, it cannot

Algorithm 1 Optimization for modeling FPC-Curves
Input: a sequence of points {vvvi|i = 1, ...,N} with specified types

(cusps, loops, inflection points, regular points, or end points)
and associated parameters hi for inflection points

Output: almost everywhere G2 continuous pieced cubic Bézier
curves that interpolate the points {vvvi|i = 1, ...,N}

1: λi ← 1, i = 1, ...,N
2: Compute the parameter t∗i for each point vvvi using Eqs. (20-

21)
3: Solve the linear system (19) for {PPPi,0|i = 1, ...,N}
4: Compute the other control points {PPPi, j|i = 1, ...,N; j =

1, ..., 3}, which are linear combinations of PPPi,0 and vvvi (a spe-
cial case is shown in Eq. (18))

5: Update {λi|i = 1, ...,N} using Eq. (17)
6: if maxi |(|κi(1)| − |κi+1(0)|)| > 10−10 then
7: Go to Step 3
8: else
9: Terminate

10: end if

have any inflection points, i.e., points with vanished curvature. A
cubic parametric curve can only have up to two inflection points.
Hence, it is impossible to achieve G2 continuity at a joint with
sign change curvature in the following two cases: (1) one of the
neighboring interpolated points is either a cusp or a loop; and (2)
there are three consecutive interpolated points specified to be in-
flection points while both joints between them have sign change
curvature, as a result G2 continuity can only be achieved at one
of the joints. For simplicity, we require that the absolute values
of the curvature are the same if they have opposite signs. That
is to say, G1 continuity is achieved at joints with sign change
curvature.

Figure 4 shows the initial, intermediate and final states of
the curve evolution process. To intuitively verify the continu-
ity of the pieced curve, we plot the curvature vectors (toward
the centers of curvature and with lengths proportional to the
radii of curvature) along the curve. Our algorithm usually takes
a dozen or dozens of iterations to meet the terminating con-
dition, maxi |(|κi(1)| − |κi+1(0)|)| ≤ 10−10. It converges fast, as
can be observed in Figure 4 that the result in the 15th iteration
(maxi |(|κi(1)| − |κi+1(0)|)| ≈ 10−6) is very close to the final result;
and maxi |(|κi(1)| − |κi+1(0)|)| converges to machine precision af-
ter 50 iterations. We can also observe that the constructed in-
terpolating curve has continuously varying curvature vectors, ex-
cept at the specified cusps (which are theoretically C2 continu-
ous indeed) and possibly at joints where the sign of curvature
changes.

Parameter settings. As discussed previously, the coefficient
matrix of the linear system (19) is determined by the given points
vvvi (with specified types), parameters t∗i (or t∗1,i and t∗2,i for a loop),
hi (for inflection points), and λi. Different parameter choices lead
to interpolatory curves with different shapes. In the following we
will discuss appropriate parameter selection for practical imple-
mentation. First, each given data point vvvi is associated with a
parameter t∗i , computed as

t∗i =
‖vvvi−1vvvi‖

‖vvvi−1vvvi‖ + ‖vvvivvvi+1‖
∈ (0, 1). (20)

If vvvi is specified to be a loop, then two parameters for this loop
are

t∗i,1 = t∗i − αi and t∗i,2 = t∗i + βi, (21)

5

0 20 40 60

-18

-14

-10

-6

-2

Iteration number

lg(maxi|(|(i(1))|-| i+1(0)|)|)

Figure 4: Curvature vectors (toward the centers of curvature and with lengths proportional to the radii of curvature) during our optimization evolving process. From left
to right: our initial solution, intermediate result after 15 iterations, final result after 30 iterations, and the plot of maximum curvature error at joints vs. iteration number.

Figure 5: Size control of loops. All the αi and βi are set to 0.3 in the left figure,
and 0.4 in the right figure.

Figure 6: The sign and value of h determine the concavity of the curve and how
much the curve is bending at both sides of the inflection point (marked with a
blue star). Magenta triangles and orange squares denote cusps and regular data
points, respectively. From left to right, h is set to be 0.5, 3, and −0.5, respectively.

where αi ∈ (0, t∗i) and βi ∈ (0, 1 − t∗i) can be used to control the
size of the loop. Intuitively, the size of a loop increases with the
increase of αi + βi; see Figure 5. We set αi = βi = 1

2 min{t∗i , 1 −
t∗i } by default. If vvvi is specified to be an inflection point, the
parameter hi is chosen in the range (−∞,− t∗i

2) ∪ (1−t∗i
2 ,+∞). The

sign and absolute value of hi describe the concavity of the curve,
and how much the curve is bending at both sides of the inflection
points; see Figure 6. If the value of hi is large, the curve will
stretch greatly around the inflection point. We set hi to be 0.5 by
default in our implementation. Users can adjust the value of hi to
obtain a desired shape of the curve.

Open curves. In the previous discussion, we assumed that the
constructed curve is closed. For a curve with end-points vvv1 and
vvvN , there are only (N − 2) cubic Bézier segments and (N − 3)
joints; see Figure 7. For each joint, we get a linear equation of
PPPi,0, PPPi+1,0, and PPPi+2,0 as Eq. (19):

Ei,1PPPi,0 + Ei,2PPPi+1,0 + Ei,3PPPi+2,0 = CCCi, i = 1, ...,N − 3.

PPP1,0 and PPPN−1,0 are specified by the end conditions:

PPP1,0 = vvv1, and PPPN−1,0 = vvvN .

v6

P1,0

P6,0

P5,0

P4,0

P3,0

P2,0

v1

v5

v4
v3

v2

v1

P2,0

P1,0= P5,0=
v6

v4
v3

P3,0

P4,0
v5v2

Figure 7: Left: a close curve with 6 cubic Bézier segments and 6 joints. Right:
an open curve with 4 cubic cubic Bézier segments and 3 joints. They both have 6
interpolated points.

Thus we obtain a system consisting of (N − 3) linear equations,
which is a simple modification of the system (19). Then, the
unknown joints PPP2,0, ...,PPPN−2,0 and λi can be iteratively updated
in the same fashion. Figures 1 and 8 show examples of curves
with end-points.

Degenerate cases. Another assumption in previous discussion
is that A, which is determined by control points, does not vanish.
Actually when A = 0, the corresponding segment degenerates
into a straight line segment. For instance, if the segment interpo-
lates at a cusp, then we use the equivalent form of condition (5),
2At∗ = −B, in the implementation. Hence, A = 0 leads to B = 0
and C = 0, which means that all control points are collinear. The
interpolation of other types of points are similar.

5. Experimental results

This section presents experimental results of our FPC-Curves
modeling framework. We perform all our interactive curve de-
sign experiments on a PC with a 3.2 GHz Intel processor and
12 GB memory. Our method provides interpolating results at
interactive speed, even for curves with a large number of input
data points. In all our examples, the four types of control points:
cusps, loops, inflection points and regular points are marked as
purple triangles, green circle, blue stars and yellow squares, re-
spectively. The end-points are marked as black squares.

Figures 1 and 8 show various curves with almost everywhere
G2 continuity constructed from the input data points in the sec-
ond row. We can observe that the curves are visually pleasant and
cusps and local loops only occur at the input data points, while
the inflection points only appear at the input data points or joints.

As has been pointed out, we can generate curves with cusps,
loops and inflection points by using previous interpolation meth-
ods. However, these methods are usually hard to create these

6

Figure 8: First row shows various FPC-Curves generated by our method from the interpolated points shown in the second row.

Figure 9: Comparison with the κ-Curves method [2]. To model a similar shape,
our FPC-Curves method uses 12 points (left) designating the exact positions of
the loops, while the κ-Curves method uses 36 points (right).

feature points at specified positions, or rely on user manipula-
tion, or even introduce unexpected feature points. In addition,
more control points are usually needed to model these features,
introducing intense labor work for users. Figure 9 compares our
FPC-Curves with the κ-Curves method [2], where the κ-Curves
method uses 36 control points, while we use only 12 control
points. Note that, in order to model a similar shape, we spec-
ify a total of 24 parameters (t∗1,i and t∗2,i for each control points) in
addition to 12 control points in our method. For the other results
in this paper, we just use the default values for t∗1,i and t∗2,i.

While our algorithm generates a global solution, the influence
of relocating an interpolated point drops dramatically when mov-
ing away from this point. Figure 10 shows an example curve
where an interpolated point at the upper right corner is moved in
opposite directions, where the original curve and the new curves
are drawn in blue and black, respectively. From the results, we
observe that relocating a control point only has a very local effect
on the shape of the spline.

6. Conclusion and future work

Interpolation of a sequence of given data points is a widely
used technique for shape modeling. Feature points such as cusps,
loops and inflection points, which are considered to be artifacts

Figure 10: The shape of interpolatory FPC-Curves changes locally by relocating
the associated interpolated points. The original curves are in blue, and the new
curves are in black.

in applications that require fairness of curves, are actually de-
sired in artistic design, as these points describe the salient shape
features. Previous interpolation methods suffer from the limita-
tion of hard controlling over the location of feature points, some-
times even introduce unexpected feature points. To achieve a
good control over the location and type of feature points, we use
cubic parametric polynomial curves, where loops, cusps, and in-
flection points are mutually exclusive. FPC-Curves guarantee
that cusps and local loops only occur at the interpolated points
and the inflection points only occur at the interpolated points or
joints. The resulting curves are guaranteed to be G1 continuous
and can achieve curvature continuous almost everywhere. More-
over, our curves have very good locality, i.e., relocating a con-
trol point only affects the local shape nearby the changed point.
These properties make our method very suitable for artistic de-
sign applications.

Currently, we only focus on controlling over cusps, loops, and
inflection points. The curvature extrema are also argued to be
feature points of a shape. The discussion of curvature extrema
of cubic curves have been discussed in [19]. Allowing control
over curvature extrema will provide more flexibility in control-
ling over the curve shapes, which will be our future work.

7

Acknowledgements

The research of Zhonggui Chen and Juan Cao was supported
by the National Natural Science Foundation of China (Nos.
61872308, 61472332, 61572020), the Natural Science Founda-
tion of Fujian Province of China (No. 2018J01104), and the
Fundamental Research Funds for the Central Universities (Nos.
20720190063, 20720190011). The research of Yongjie Jessica
Zhang was supported in part by the PECASE award N00014-
16-1-2254, NSF CAREER Award OCI-1149591, NSF CBET-
1804929, CMU Manufacturing Futures Initiative and CMU-
PITA.

Appendix A. Geometric conditions for interpolation

We give a more detailed discussion about geometric conditions
for a cubic Bézier curve (2) interpolating a point at the parameter
t∗ such that the interpolated point becomes either a cusp, an in-
flection point, or a regular point. We prove that all the conditions
can be expressed as linear combinations of the control points PPPi,
i = 1, 2, 3. We first introduce an identity that will be employed
by the following proofs, and we have

APPP1 + 3CPPP3 = BPPP2. (A.1)

This identity can be easily proved by expanding the determinants.
Then we discuss each case respectively.

Appendix A.1. Condition (6) for cusps

A general cubic Bézier curve has a cusp if and only if ∆ = B2−

4AC = 0. If we specify the parameter of the cusp as t∗ ∈ (0, 1),
then t∗ = − B

2A = − 2C
B , where B , 0. Thus, we have

2A = −
B
t∗
, (A.2)

and
2C = −t∗B. (A.3)

(A.2)×PPP1 + (A.3)×3PPP3 yields:

2APPP1 + 6CPPP3 = −3Bt∗PPP3 −
B
t∗

PPP1.

With Eq. (A.1), we have 2BPPP2 = −3Bt∗PPP3 −
B
t∗PPP1. Condition (6)

can be obtained straightforwardly from the above equation.

Appendix A.2. Condition (11) for inflection points

The conditions for an interpolated point to be an inflection
point are Eq. (10) and Eq. (9). Rewriting condition (10) as

B = −2A(t∗ + h), (A.4)

and substituting it into condition (9), we have

C = (t∗2 + 2ht∗)A. (A.5)

Thus, (A.5)×3PPP3− (A.4)×PPP2 yields

3CPPP3 − BPPP2 = 3(t∗2 + 2ht∗)APPP3 + 2(t∗ + h)APPP2.

Condition (11) becomes an immediate consequence of the above
equation using the identity (A.1).

Appendix A.3. Condition (14) for regular points
The conditions for an interpolated point to be a regular point

are Eq. (A.6) and Eq. (13). Eq. (A.6) can be rewritten as

B = −2t∗A. (A.6)

Substituting Eq. (A.6) into Eq. (13), we have

−C = (1 + 2t∗)A. (A.7)

Thus, (A.7)×3PPP3 + (A.6)×PPP2 yields

BPPP2 − 3CPPP3 = 3(1 + 2t∗)APPP3 − 2t∗APPP2.

Following the identity (A.1), we obtain condition (14) from the
above equation.

Appendix B. Linear system of joints

We use an integer number ki ∈ {0, 1, 2, 3} to indicate the type
of an interpolated point vvvi, where 0, 1, 2, and 3 represent a loop, a
cusp, an inflection point, or a regular point, respectively. The co-
efficients of the linear system (19) are determined by parameters
t∗i (t∗i,1 and t∗i,2 for loops), λi, hi, vvvi and ki as

Ei,1 = Mki
i,1,

Ei,2 = Mki
i,2 + λiM

ki+1
i+1,3,

Ei,3 = λiM
ki+1
i+1,4,

CCCi = Mki
i,5vvvi + λiM

ki+1
i+1,6vvvi+1,

where

M0
i,1 =

(t∗i,1−1)(t∗i,2−1)
t∗i,1t∗i,2

,

M0
i,2 = −

t∗i,1t∗i,2−2t∗i,1−2t∗i,2+3
(t∗i,1−1)(t∗i,2−1) ,

M0
i,3 = −

t∗i,1t∗i,2+t∗i,1+t∗i,2
t∗i,1t∗i,2

,

M0
i,4 =

t∗i,1t∗i,2
(t∗i,1−1)(t∗i,2−1) ,

M0
i,5 =

t∗i,1
2+t∗i,2

2+t∗i,1t∗i,2−2t∗i,1−2t∗i,2+1
t∗i,1t∗i,2(t∗i,1−1)(t∗i,2−1) ,

M0
i,6 =

t∗i,1
2+t∗i,2

2+t∗i,1t∗i,2−t∗i,1−t∗i,2
t∗i,1t∗i,2(t∗i,1−1)(t∗i,2−1) ,



M1
i,1 =

(t∗i −1)2

t∗i
2 ,

M1
i,2 = −

t∗i −3
t∗i −1 ,

M1
i,3 = −

t∗i +2
t∗i
,

M1
i,4 =

t∗i
2

(t∗i −1)2 ,

M1
i,5 =

3t∗i −1
t∗i

2(t∗i −1)
,

M1
i,6 =

3t∗i −2
t∗i (t∗i −1)2 ,

M2
i,1 = 1 − 2t∗i

2+6ht∗i −3t∗i −4h+1
t∗i (t∗i

2+4ht∗i −2h−t∗i)
,

M2
i,2 =

2t∗i
2−2t∗i +6ht∗i −4h

(t∗i −1)(t∗i
2+4ht∗i −2h−t∗i)

− 1,

M2
i,3 = −

2t∗i
2−2t∗i +6ht∗i −2h

t∗i (t∗i
2+4ht∗i −2h−t∗i)

− 1,

M2
i,4 =

t∗i
3+4ht∗i

2

(t∗i −1)(t∗i
2+4ht∗i −2h−t∗i)

,

M2
i,5 =

3t∗i
2+6ht∗i −4t∗i −4h+1

t∗i (t∗i −1)(t∗i
2+4ht∗i −2h−t∗i)

,

M2
i,6 =

3t∗i
2+6ht∗i −2t∗i −2h

t∗i (t∗i −1)(t∗i
2+4ht∗i −2h−t∗i)

,



M3
i,1 =

2t∗i
4+4t∗i

3−12t∗i
2+4t∗i +2

2t∗i
4+5t∗i

3−4t∗i
2−3t∗i

,

M3
i,2 = −

2t∗i
4+4t∗i

3−12t∗i
2−6t∗i

2t∗i
4+5t∗i

3−4t∗i
2−3t∗i

,

M3
i,3 = −

2t∗i
4+6t∗i

3+3t∗i
2−8t∗i −3

2t∗i
4+5t∗i

3−4t∗i
2−3t∗i

,

M3
i,4 =

2t∗i
4+6t∗i

3+3t∗i
2

2t∗i
4+5t∗i

3−4t∗i
2−3t∗i

,

M3
i,5 =

2+10t∗i
2t∗i

4+5t∗i
3−4t∗i

2−3t∗i
,

M3
i,6 =

3+8t∗i
2t∗i

4+5t∗i
3−4t∗i

2−3t∗i
.

References

[1] G. Farin, Curves and surfaces for CAGD: a practical guide, Morgan Kauf-
mann, 2002.

[2] Z. Yan, S. Schiller, G. Wilensky, N. Carr, S. Schaefer, κ-Curves: interpo-
lation at local maximum curvature, ACM Transactions on Graphics 36 (4)
(2017) 129:1–129:7.

[3] R. L. Levien, From spiral to spline: optimal techniques in interactive curve
design, Ph.D. thesis, University of California, Berkeley, USA (2009).

[4] G. Brunnett, J. Kiefer, Interpolation with minimal-energy splines,
Computer-Aided Design 26 (2) (1994) 137–144.

8

[5] R. Levien, C. H. Séquin, Interpolating splines: which is the fairest of them
all?, Computer-Aided Design and Applications 6 (1) (2009) 91–102.

[6] J. Peters, Chapter 8 - geometric continuity, in: G. Farin, J. Hoschek, M.-
S. Kim (Eds.), Handbook of Computer Aided Geometric Design, North-
Holland, Amsterdam, 2002, pp. 193–227.

[7] Y. Y. Feng, J. Kozak, On G2 continuous interpolatory composite quadratic
Bézier curves, Journal of Computational and Applied Mathematics 72 (1)
(1996) 141–160.

[8] E. Catmull, R. Rom, A class of local interpolating splines, Computer Aided
Geometric Design (1974) 317–326.

[9] G. Deslauriers, S. Dubuc, Symmetric iterative interpolation processes, Con-
structive Approximation 5 (1) (1989) 49–68.

[10] H. P. Moreton, Minimum curvature variation curves, networks, and surfaces
for fair free-form shape design, Ph.D. thesis, University of California at
Berkeley, Berkeley, CA, USA (1992).

[11] G. Farin, Degree reduction fairing of cubic B-spline curves, in: Geometry
Processing for Design and Manufacturing, 1992, pp. 87–99.

[12] G. Harary, A. Tal, The natural 3D spiral, Computer Graphics Forum 30 (2)
(2011) 237–246.

[13] D. Walton, D. Meek, A planar cubic Bézier spiral, Journal of Computational
and Applied Mathematics 72 (1) (1996) 85–100.

[14] G. Farin, Class A Bézier curves, Computer Aided Geometric Design 23 (7)
(2006) 573–581.

[15] J. Cao, G. Wang, A note on class A Bézier curves, Computer Aided Geo-
metric Design 25 (7) (2008) 523–528.

[16] C. Y. Wang, Shape classification of the parametric cubic curve and paramet-
ric B-spline cubic curve, Computer-Aided Design 13 (4) (1981) 199–206.

[17] B.-Q. Su, D.-Y. Liu, An affine invariant and its application in computational
geometry, Scientia Sinica (Series A) 24 (3) (1983) 259–267.

[18] M. C. Stone, T. D. DeRose, A geometric characterization of parametric
cubic curves, ACM Transactions on Graphics 8 (3) (1989) 147–163.

[19] D. Walton, D. Meek, Curvature extrema of planar parametric polynomial
cubic curves, Journal of Computational and Applied Mathematics 134 (1)
(2001) 69–83.

9

	Introduction
	Related work
	Geometric constraints
	Geometric characterization of parametric cubic curves
	Interpolation of cubic Bézier curves at feature points
	Geometric conditions for curvature continuity

	Optimization
	Experimental results
	Conclusion and future work
	Geometric conditions for interpolation
	Condition (6) for cusps
	Condition (11) for inflection points
	Condition (14) for regular points

	Linear system of joints

