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Recently, a new bivariate simplex spline scheme based on Delaunay configuration has been introduced

into the geometric computing community, and it defines a complete spline space that retains many

attractive theoretic and computational properties. In this paper, we develop a novel shape modeling

framework to reconstruct a closed surface of arbitrary topology based on this new spline scheme. Our

framework takes a triangulated set of points, and by solving a linear least-square problem and

iteratively refining parameter domains with newly added knots, we can finally obtain a continuous

spline surface satisfying the requirement of a user-specified error tolerance. Unlike existing surface

reconstruction methods based on triangular B-splines (or DMS splines), in which auxiliary knots must

be explicitly added in advance to form a knot sequence for construction of each basis function, our new

algorithm completely avoids this less-intuitive and labor-intensive knot generating procedure. We

demonstrate the efficacy and effectiveness of our algorithm on real-world, scattered datasets for shape

representation and computing.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction and motivation

With the rapid new development of modern scanning and data
acquisition technologies, complicated geometric models with a
huge number of point clouds are routinely collected by 3D
scanners everyday at an explosive speed. Converting these
acquired datasets from raw point clouds into smooth surface
representations has become an important task that gives rise to a
wide range of visual computing applications including reverse
engineering, geometric modeling and processing, interactive 3D
graphics, computational vision, etc. This reconstruction process
from raw data to a smooth shape is often called surface
reconstruction, or referred to as surface fitting, i.e., the interpola-
tion or approximation of unorganized points or structured
(gridded or triangulated) data using continuous spline-based
representation. At present, there are three major types of smooth
surfaces being employed in this problem: algebraic surfaces,
subdivision surfaces, or parametric piecewise polynomial surfaces.

Generating algebraic surfaces from raw datasets is to find a
smooth function whose zero level-set is in close proximity to the
ll rights reserved.
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given point cloud with minimized deviation. Bajaj et al. [1] and
Moore and Warren [2] described the methods for fitting G1

piecewise algebraic surfaces of arbitrary topology from an
unorganized set of points. Pratt [3] and Taubin [4] minimized
the sum of squared Hausdorff distances from the data points to
the zero level-set of a polynomial in three variables. Algebraic
surface reconstruction methods are usually limited to simple and
special shapes.

The basic idea of subdivision surface fitting is to get a smooth
shape close to the given scattered data from a polygonal mesh
by repeatedly adding new vertices and edges according to certain
subdivision rules. Hoppe et al. [5] presented an approach for
automatically fitting subdivision surfaces from dense triangle
meshes, which can handle both smooth and sharp models.
Later, Lee et al. [6] used subdivision surfaces with displacement
maps. Suzuki et al. [7] proposed a method for subdivision
surface fitting starting from an interactively defined control
mesh. Ma et al. [8] presented a direct approach for subdivision
surface fitting from a subset of initial vertices of the given dense
triangle mesh. Subdivision-based representations of complex
geometry can be manipulated and rendered very efficiently,
which make subdivision surfaces a very desirable tool for
animation and visualization purposes, however, they are not
commonly supported with current CAD modeling and design
systems.
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Spline-based algorithms have been widely studied and em-
ployed since they are well suited for further processing in CAD/
CAM/CAE systems for FEM analysis and simulation purposes.
Therefore, NURBS, as an industrial standard tool in computer-
aided geometric design, becomes the most popular smooth
surface representation used in surface fitting. Krishnamurthy
and Levoy [9] proposed an algorithm of using B-spline surfaces to
fit dense meshes, in which displacement was used to capture the
fine details. Eck et al. [10] proposed a scheme to automatically fit
meshes with arbitrary topological types by using B-splines.
Greiner and Hormann [11] used hierarchical B-splines to inter-
polate and approximate scattered data by optimizing the output
surface with respect to a fairness functional. Several ideas and
methodologies on obtaining parameters for NURBS surface fitting
toward randomly organized data were presented by Piegl and
Tiller [12]. However, the inherent rectilinear shape of tensor-
product B-splines severely limits their applicability in modeling
general surfaces with arbitrarily complicated topological types.
Specially, since the general surface is usually defined as a network
of (trimmed) B-spline patches, it is very challenging to enforce the
continuity across boundaries of different patches. Thus, it
naturally gives rise to the urgent demand for the generalization
of B-splines over triangular or polygonal domains as a more
powerful modeling tool in surface fitting.

Thus far, much research work has been conducted on bivariate
generalization of univariate B-splines, such as triangular Bézier
patches [13], B-patches [14], box splines [15], and simplex spline
[15]. Moreover, there are splines which are designed from
triangular Bézier patches or simplex splines and have more nice
properties than Bézier patches or simplex splines themselves. For
example, triangular G1-splines [17,18] are essentially composed of
triangular Bézier patches with G1 continuity along the boundary,
which are the hierarchical version of the basic method proposed
in [19,20]. Surfaces constructed by triangular G1 splines surface
can have arbitrary topology and have been used in fitting problem
[21]. DMS splines [22,23] is one of the most powerful schemes
among the generalization based on simplex spline, because of its
numerous positive characteristics such as automatic smoothness
properties, the ability to define surfaces over triangular or multi-
sided domains. It has also been widely used in surface fitting
[24–30]. However, a limitation of DMS spline is that, for any given
set of knots, one has to explicitly add a set of auxiliary knots to
each vertex within the triangulated domain in advance in order to
form a knot sequence for the proper definition of each basis
function and its evaluation. At present, it is still not clear how
these auxiliary knots (being associated with the domain triangu-
lation and its vertices) could affect the spline basis and the final
surface in a quantitative way. Neamtu [31,32] proposed a new
bivariate B-spline based on Delaunay configurations which
possesses important and attractive properties in the same way
as DMS splines do, such as optimal smoothness, linear indepen-
dence, and polynomial reproducibility. What is more significant is
that this new spline scheme could enable the knot selection
procedure in a very elegant and natural way. Furthermore, this
scheme can completely avoid the non-intuitive addition of
auxiliary knots to each vertex within the domain triangulation.

Bivariate B-splines based on Delaunay configuration is one of
the simplest and most effective natural generalizations of
univariate B-splines. We therefore design practical algorithms
for surface reconstruction by using cubic bivariate B-splines with
Delaunay configurations in this paper. The specific contributions
of our novel reconstruction framework include:
1 If the input data are point clouds, point-cloud segmentation (e.g. [57])

1.
should be applied, and in step 2, point-based parameterization (e.g. [55])

techniques should be used.
We present a surface reconstruction framework based on
Delaunay configuration pioneered by Neamtu [31]. Our para-
meterization and reconstruction framework is able to define
such novel spline scheme for effective modeling of free-form
surfaces. Under this scheme, no auxiliary knots outside of the
original knots are necessary for basis function construction.
This uniquely distinguishes our work from existing fitting
based on DMS splines, which a knot sequence must be
associated.
2.
 Without converting data into quadrilateral meshes, this
framework can handle scattered or dense points from closed
triangular meshes with arbitrary topology.
3.
 The fitting process is adaptive and capable of satisfying a user-
specified error tolerance. And the final fitted surface is
represented explicitly by a collection of spline basis functions
and their corresponding control points.

Our method essentially generates a spline for a surface of arbitrary
topology in three steps:
1.
 We segment the input mesh data1 into a set of topological disk-
like patches and grow their boundaries outward to cover a few
more rings. This patch expansion allows vertices near the
boundary of each patch to be always covered by multiple
patches.
2.
 We parameterize each patch and map it onto a unit disk that
serves as a canonical parameter domain. Here, we only conduct
local parameterization. Then we place initial knots on each
parameter domain in order to compute Delaunay configura-
tions towards the effective computation of basis functions.
Fitted surfaces are obtained after solving a least-square
problem.
3.
 We can progressively and adaptively refine the fitting result by
inserting additional knots to the regions where large fitting
errors occur. A set of spline surfaces can be obtained with
improved fitting quality.

The rest of this paper is organized as follows: Section 2 reviews
the related work on simplex splines and the bivariate B-splines
generalized from simplex splines. In Section 3, we introduce
Delaunay configurations and bivariate splines defined over this
type of domains. Section 4 formulates the problem of surface
fitting. In Section 5, we describe details of our algorithm for
surface fitting by using Delaunay configuration B-splines. Experi-
mental results are shown in Section 6. Finally, we conclude our
paper and discuss future work in Section 7.
2. Background and related work

2.1. Simplex splines

The simplex spline [16], defined by de Boor in 1972, is a
multivariate generalization of the well-known univariate
B-splines of Scheoenberg [33]. A degree-k simplex spline Bð�jXÞ

is a smooth, degree-k, piecewise polynomial function defined over
a set of kþ sþ 1 points X � Rs called knots. We focus on the
bivariate case in this paper and refer readers to [34] (and
references therein) for a detailed illustration and discussion of
theories of simplex splines. A bivariate simplex spline of degree-
zero is defined by a collection of three non-collinear knots t1; t2

and t3, and is simply a normalized characteristic function of the
triangle whose vertices are these knots. More specifically, if we
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Fig. 1. Some Delaunay configurations of point set f1; . . . ;21g: degree-1 Delaunay

configuration ff12;13;15g; f14gg; degree-2 Delaunay configurations ff2;5;6g;

f3;4gg; degree-3 Delaunay configurations ff19;20;21g; f16;17;18gg and

ff16;17;18g; f19;20;21gg with identical point set.
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denote by Mð�jt1; t2; t3Þ the degree-0 simplex spline with knots
ft1; t2; t3g, then

Mðxjt1; t2; t3Þ ¼
1=area½t1; t2; t3�; x 2 int½t1; t2; t3�;

0 otherwise;

(
where ½. . .� denotes the convex hull of a set of points and int½. . .�
denotes its interior.

Degree n simplex splines defined over a knot set X with size
of nþ 3 can be recursively expressed in terms of lower-degree
ones as

MðxjXÞ ¼
nþ 2

n

X
y2X

lyMðxjXnfygÞ; x 2 R2, (1)

where the numbers ly 2 R; y 2 X, are chosen such thatX
y2X

lyy ¼ x;
X
y2X

ly ¼ 1.

2.2. Generalization of univariate B-splines

In order to model geometric curves, the classical univariate
B-splines [33] are among the most versatile control schemes.
Nowadays, they have become standard tools in computer-aided
geometric design and modeling of curves and surfaces. Given the
success of univariate B-splines, one naturally desires to have its
multivariate analog, such as surfaces. However, extending this
technique onto surface patches has proven to be a non-trivial
endeavor. One straightforward way is the tensor-product
B-splines, which generalizes a univariate B-spline in two para-
metric mutually orthogonal directions naturally. However, the
main limitation of the tensor-product B-splines in shape modeling
is that the underlying shape (and the parametric domain) has to
be ‘‘topologically’’ rectangular. This largely restricts the applic-
ability of any non-tensor-product scheme. A more powerful
generalized bivariate B-spline, which can define surfaces over
triangular or polygonal domains, is very desirable for CAD
designers/users.

On the other hand, individual simplex splines carry many nice
properties of univariate B-splines [31], therefore, it becomes
another popular direction towards generalizing univariate
B-splines to multivariate ones without making use of the tensor-
product mechanism. The essential problem is that: for given any
generic knot set K, one would like to choose appropriate
collections of knot sets of size kþ 3 to construct simplex splines
of degree k, such that the space spanned by these simplex splines
has analogous properties to the univariate B-spline space. We
refer the readers to a survey [31] by Neamtu for more general-
ization methods based on simplex splines.

Among existing generalization methods, the DMS spline is
probably one of the most powerful and well-known ones. It has
been widely studied and applied in many applications. For
example, Pfeifle and Seidel [27] proposed an algorithm to evaluate
quadratic triangular B-splines and used it to fit scattered
functional data by using least squares and optimization techni-
ques. Rational DMS splines were employed by Han and Medioni
[28] to model and visualize sparse and noisy data, which may
contain unspecified discontinuous edges and functions. Dynamic
triangular NURBS, a free-form shape model based on principles of
physical dynamics, was proposed by Qin and Terzopolous [29]. He
et al. [30] derived the evaluation formulas for the directional
derivatives of DMS splines with respect to knots and applied them
to surface fitting. In most bivariate generalizations based on
simplex splines, one has to add auxiliary knots to each generic
knot in advance to form all the required knot sequence for each
basis function. This auxiliary knot generating procedure is both
labor-intensive and far less-intuitive, and it is impossible to
accurately determine how these auxiliary knots influence the final
shape of each basis function as well as the entire spline surface in
a quantitative manner.

Recently, Neamtu [31,32] presented a new method of using
simplex splines to generalize univariate B-spline onto its multi-
variate analogy. This idea is based on the concept of Delaunay
configurations from computational geometry. Within this scheme,
new basis functions share most excellent properties with DMS
splines such as optimal smoothness and polynomial reproduci-
bility. Furthermore, unlike DMS spline which has to add auxiliary
knots to each generic knot before the evaluation for each basis
function, this new generalization method uses circles to choose
closest knots as knot sets to define each basis function (see
Section 3), which is very similar to the knot selection criteria of
univariate case. These elegant properties motivate us to develop
practical CAD applications such as surface fitting using this new
bivariate B-spline.
3. Theory of Delaunay configuration B-splines

3.1. Delaunay configuration

Given a set of knots K � R2, a Delaunay triangulation [35] of K

is subsets of size-3, where no other knots are inside the
circumsphere defined by each subset. The Delaunay configuration
is a higher degree analog of the Delaunay triangulation, defined
as follows.

Definition 1. A degree-k Delaunay configuration of a given set of
knots K � R2 is a pair

X ¼ ðXB;XIÞ, (2)

such that

XB;XI � K ; #XB ¼ 3; #XI ¼ k, (3)

and such that the circumsphere of XB contains only XI in its
interior and no other knots from K, where # means the size of the
set (see Fig. 1). The family of all Delaunay configurations of degree
k associated with the set K is denoted as ~Dk. ~D0 is the Delaunay
triangulation of K.

Subscripts ‘‘B’’ and ‘‘I’’ in the definition stand for the ‘‘boundary’’
and ‘‘interior’’, respectively. Note that some Delaunay configura-
tions might be different as pairs, yet collectively forming the same
sets. In particular, there could be two different configurations
ðX1

B;X
1
I Þ and ðX2

B;X
2
I Þ, corresponding to the same set of points, i.e.,

X1
B [ X1

I ¼ X2
B [ X2

I , but X1
BaX2

B;X
1
I aX2

I . (An example is illustrated
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Fig. 2. The pipeline of our surface fitting algorithm.
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in Fig. 1: degree-3 Delaunay configurations ff19;20;21g;
f16;17;18gg and ff16;17;18g; f19;20;21gg.) We denote the ‘‘un-
oriented’’ Delaunay configurations, consisting of knot sets of form
XB [ XI , i.e., without distinguishing the boundary and interior
knots, as Dk.

The notion of a Delaunay configuration is implicit in papers
concerned with the computation of higher-order Voronoi dia-
grams [36–38]. It is proved that the number of k-degree Delaunay
configurations of given knot set with size n is bounded by ð2kþ 1Þn
(refer to [36] for more details).

3.2. Delaunay configuration B-spline surface

The set of simplex splines from Delaunay configurations has
many attractive properties (proved in [31]) such as partition-of-
unity, polynomial reproduction, and degenerate case being
univariate B-splines. Moreover, if we remove the multiple entries
in the collections of simplex splines from Delaunay configura-
tions, we can get linear independent splines.

Definition 2. Let kX0, XT ¼ fðXB;XIÞjXB [ XI ¼ T; T 2 Dkg.
We define simplex splines from un-oriented Delaunay configura-
tions as

BT ¼
X

ðXB ;XIÞ2XT

jarea½XB�jMð�jTÞ, (4)

where area½XB� is the area of the triangle determined by XB. We
call it Delaunay Configuration B-spline (DCB), which are the sum
of normalized simplex splines defined from Delaunay configura-
tions with the identical knot set. The surface constructed by
Delaunay configuration B-splines (abbreviated as DCB surface) is
defined as

S ¼
X
T2Dk

BT cT , (5)

where cT 2 R
3 is the control point corresponding to the basis

function BT .

4. Surface reconstruction from scattered points with DCB

The goal of surface reconstruction from scattered points is to
determine a compact representation surface M, such that M

approximates an unknown surface partially determined by a set of
sample points X ¼ fx1; . . . ; xng; xi 2 R

3. In this paper, we take
vertices of a polygonal (triangular) mesh as X, and use parametric
cubic DCB to fit surface M.

If the data points fx1; . . . ; xng stay on a topological disk-like patch
and correspond to known parameters fu1; . . . ;ung on a parameter
domain D, the case is much simpler: the parametric surface fitting
is then formulated as how we can determine all control points to
minimize the error vector:

xi � SðuiÞ,

where for ðt 2 DÞ, SðtÞ is the parametric surface defined over D.
Therefore, globally we will minimize these quantities in a least-
square sense as follows:

minimize
Xn

i¼1

kxi �
X

s

BsðuiÞcsk
2, (6)

where
P

scsBsðuiÞ is the DCB surface with control point cs.
Our framework aims to find a DCB surface to approximate

given sample points from closed surfaces with arbitrary topology.
This case is much more complicated and technically challenging,
and it needs a proper parameterization in advance. Globally
parameterizing a surface cannot avoid singularity points (unless
the underlying surface is of genus-1). In addition, technical issues
such as controlling the area-stretching distribution globally and
retaining enough sampling rates near sharp geometric features
also arise in global approaches without satisfactory solutions.
Therefore, we resort to local conformal parameterizations to
generate the covering parametric domains. Local methods give
rise to better flexibility, user control, and improved time/space
performance, but will need to specifically address the issue
of segmentation and patch blending. We explain our idea
with details and illustrate our implementation algorithm in the
next section.
5. Algorithm description

5.1. Overview

In the literature of surface fitting, a surface with arbitrary
topological types is usually defined as a network of patches.
And among adjacent patches, certain degree of continuity at
each patch’s boundary is guaranteed by enforcing some con-
straints on the control points. In contrast, in this work,
our obtained surface can be viewed as a ‘‘one-piece’’ representa-
tion. The input of the fitting algorithm is a dense triangular mesh
Mn ¼ ðX ¼ fx1; x2; . . . ; xng;VÞ, where n is the vertex number, and V

are the connectivity of the vertices. Mn is closed and of arbitrary
topology. Our output is a one-piece cubic DCB parametric surface.

For the purpose of convenience, we shall first introduce
notations used in this paper. The subset of X is denoted as
Xk; k ¼ 1;2; :::;m, where m is the total number of subset Xk. We
denote the size of Xk by #Xk. Suppose G is a positive integer set,
then we use xGi to represent a vertex xi 2 X is involved in subset
Xk; k 2 G. For example, xf1;2;3g1 means vertex x1 belongs to subset
X1;X2 and X3 at the same time. Vertex xGi with #G41 and #G ¼ 1
is called overlapped vertex and non-overlapped vertex, respectively.
Finally, we call a parametric domain related to Xk a chart, denote it
as Dk, and use uk

i to represent the parameter coordinate of vertex
xi on domain Dk.

A pipeline overview of our algorithm is illustrated in Fig. 2, our
DCB surface fitting algorithm comprises three stages:
1.
 Generating charts. It includes a sequential pipeline of mesh

segmentation, extension and parameterization. Mesh segmenta-

tion partitions scattered data X into several topological disk



ARTICLE IN PRESS

J. Cao et al. / Computers & Graphics 33 (2009) 341–350 345
patches fXk; and then we grow each patch outward for several
rings and get the patch Xk, so that vertices near boundaries of
each patch become overlapped vertices. This extension will be
used later to glue patches into a ‘‘one-piece’’ closed surface.
Finally, we conformally parameterize each patches Xk to a unit
disks, chart Dk (so that overlapped vertices have different
parameters on different charts). In other words, charts of
adjacent patches share overlapped regions.
2.
 Patch blending. First, on each chart Dk, we set preliminary knots
according to the distribution of uk

i on the parameter domain.
Then we blend all patches together by using rational DCB basis
functions to guarantee the ‘‘partition of unity’’ of the involved
basis functions.
3.
Fig. 3. Segmentation and expansion: (left) before expansion, (right) after

expansion.

Fig. 4. Extension of patch of gargoyle’s nose. The patch of gargoyle’s nose is

extended outward for 10 rings, and the boundary before extension is highlighted

using yellow curve.
Surface refinement. We iteratively refine the spline surface by
accurately estimating fitting errors. Knots are inserted locally
in those regions whose approximation is not satisfied by the
given threshold.

5.2. Generating charts

The first step in surface fitting is to find proper parametric
domains and generate a good parametrization. A general surface
can either be globally parameterized onto a single domain or be
partitioned and parameterized separately onto a set of sub-
domains. Globally parameterizing a complicated closed mesh
oftentimes introduces larger angle and area distortion between the
model and its corresponding domain, and when the surface is not a
topological disk or torus, the mapping inevitably has singularities
which are extremely difficult to handle. No bijectivity of the
mapping is guaranteed on singularities, and their nearby regions
usually has huge angle and area distortion. In contrast, when a
surface is with complicated topology and geometry, if we segment
it into geometrically flat sub-patches with compact boundaries, we
can effectively obtain low-area-distorted and angle-distortion-free
local parameterization, which is very important and attractive for
our surface fitting purpose. Based on these observations, in our
work we adopt the strategy of partitioning the mesh into sets of
sub-patches and then individually compute their conformal
parameterization onto unit disks.

5.2.1. Segmentation

A patch with flat geometry shape and compact boundary
usually yields conformal parameterization with small area
distortion. Therefore, segmentation techniques that can slice
ridges and ravines and produce flat local subregions are much
more desirable. Many recent surface segmentation techniques
currently available in literatures (a detail discussion is beyond the
scope of this work and we refer the readers to the survey [49]) can
be used. The idea presented by [39] is simple and it fits our goal
very well, therefore we employ this idea in generating our surface
segmentation. The segmentation starts from a set of randomly
selected seed faces on the original mesh, then these seeds grow to
roughly flat and compact charts whose boundaries align with the
model’s crease. A necessary post-process is interactively con-
ducted to merge or slice resultant sub-regions when they are too
large or small to assure that each patch has a suitable size. As
shown in Fig. 3 (left), the model of gargoyle are partitioned into
total 12 patches, rendered in different colors.

5.2.2. Expansion

In order to continuously glue sub-patches to the closed surface,
we want to assure regions near segmentation boundaries are
covered by more than one chart. Therefore, we grow each sub-
patch ~Xi, and let its extended region Xi covers larger part of the
original surface. An efficient implementation of this over the
triangular mesh is to iteratively expand each sub-patch (by adding
in new triangles the growing boundary meets) for several times.
We assure the disk-topology of the growing chart ~Xi during this
process. After the expansion, vertices nearby the sub-patch
boundaries will all become ‘‘blending vertices’’, since they are
covered by several sub-patches at the same time. In our
experiments, we apply the expansion of each patch for 10-rings
by default. Then we conduct a sequential post-expansion
smoothing to remedy the potential ‘‘zigzag’’ boundary of the
new patch Xi due to the combinatorial broadcasting. Intuitively,
during the smoothing process, if a triangle face is not within a
patch but two of its edges are on the patch boundary, then this
face will be included into this patch; if a triangle face is in a patch,
while neither of its neighboring faces is, then this face will be
removed from the patch. Fig. 3 (right) shows the result of our
expansion process: each shared sub-region is illustrated with the
blended color of those patch that cover it. Fig. 4 illustrates another
example where the patch of gargoyle’s nose is expanded. We show
the expanded chart, with its original segmentation boundary
highlighted using the yellow curve.
5.2.3. Parametrization

Conformal maps [40,41] have been widely used in texture
mapping, geometry meshing and visualization (see surveys
[48,47] for more applications). It has many good properties in
serving for the domain of spline functions. Specifically, it is
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intrinsic to the geometry of the surface, independent of the mesh
resolution, and free of angle distortion.

Boundary-fixed quasi-conformal mappings such as harmonic
maps [51] and mean-value coordinators [50] usually have large
angle distortion near the boundary regions, in contrast, boundary-
free conformal mapping using circle packing [52] and curvature
flow [53] are angle-distortion free but usually have non-compact
sub-patch boundaries, therefore we compute the conformal
mapping to the unit disk. The idea is based on the fact that
harmonic mapping from a closed surface to the unit sphere is
conformal. We double-cover the topological-disk surface P (i.e.,
duplicate P by gluing P to its inversely oriented copy P0, along its
boundary @P) to a genus-zero surface ~P, then compute harmonic
mapping from ~P onto the unit sphere S2. Because of the symmetry
of the ‘‘double-covering’’ operation, the topological disk P is
conformally mapped onto a hemisphere of S

2. By composing a
stereo-projection, we can obtain P’s conformal parameterization
onto the unit disk Di (see [54] for more details of this algorithm).

Each patch Xi is parameterized onto a unit disk Di. As shown in
Fig. 5, the patch of the Gargoyle’s nose is mapped onto a unit disk.
Non-overlapped vertices, colored in gray, locate in the interior
region of the chart. Vertices near the boundary are covered by
several charts and rendered in different colors. As mentioned
previously, overlapped points will be mapped onto different
charts (with different parameter coordinates), and used for
patches blending in the next subsection.

5.3. Patch blending and fitting

In this section, we construct a globally continuous DCB surface
based on the blending of sub-patches and their corresponding
parameterizations computed in Section 5.2.

5.3.1. Initial knot placement

In order to construct Delaunay configuration and DCB basis
functions, we have to place initial knots on each chart. According
to the classical B-spline theory, different choices of knots have
considerable and drastic influence on the final shape of spline
Fig. 5. Parameterizaiton, knot placement, and Delaunay configuration basis

functions. (a) Parameterization of the patch of gargoyle’s nose and initial knot

placement; 53 initial knots are placed at the beginning of the algorithm. (b) Ninety

more knots are placed during the refinement. (c) Some Delaunay configuration

B-splines defined over the initial knot set in (a).
curves or surfaces. However, the automatic knot placement is a
multivariate and multimodal nonlinear optimization problem.
Therefore, many papers only deal with this problem by heuristic
methods [42–44]. Intuitively, within the domain regions that have
subtle geometric details and more parameter points, more knots
are necessary. Based on this observation, we use K-mean cluster
method [45,46] to place preliminary knots within the interior
region of each chart. Specifically, for each chart with parameter
points P ¼ fu1;u2; . . . ;ung on it, the first k knots t1; t2; . . . ; tk are
determined by minimizing the following function:Xk

i¼1

X
uj2Si

kuj � tik
2,

where there are k clusters Si; i ¼ 1;2; . . . ; k of parameters P and
kuj � tik is the Euclidean distance between uj and ti. In addition to
these initially added knots, we further add more knots by
sampling the parameters points which are on the boundary of
the disk to guarantee that all the overlapping vertices are covered
by at least one chart. In our experiments, k is empirically set to be
a ratio of the total vertex number b#Xi

200c, and we also place 40 more
knots at the boundary of the chart. In Fig. 5, total 53 preliminary
knots are placed on the chart covering gargoyle’s nose.

5.3.2. Basis function construction

Once we have knots on charts, we can compute Delaunay
configurations and corresponding DCB basis functions on each
individual chart (as described in Section 3). Suppose we generate
total mj DCB basis functions on chart Dj, denote these functions as

bj
sðtÞ; t 2 Dj; s ¼ 1; . . . ;mj, and denote the set of bj

s on chart Dj

as yj ¼ fb
j
sgj

mj

s¼1.

So far, basis functions defined on one chart do not interact with
functions on other charts. To obtain a closed DCB surface, we
further use transition functions ai

j to extend the basis functions
defined over chart Di to an adjacent chart Dj. In particular, the
extended basis functions are defined as follows:

^
Bj

sðtÞ ¼
bj

sðai
jðtÞÞ if t 2 Di1 ;i2 ;i3 � Di;

0 otherwise;

(
(7)

where xi1 ; xi2 ; xi3 2 Xi

T
Xj, Di1 ;i2 ;i3 is the triangle formed by their

parameter points ui
i1
;ui

i2
;ui

i3
2 Di and

ai
jðtÞ ¼ v1uj

i1
þ v2uj

i2
þ v3uj

i3
,

with ðv1;v2;v3Þ being the barycenter coordinate with respect to
Di1 ;i2 ;i3 , i.e., t ¼ v1ui

i1
þ v2ui

i2
þ v3ui

i3
. To ensure the basis functions

sum up to one, we normalize basis functions obtained in Eq. (7) as
follows:

Bj
sðtÞ ¼

^
Bj

sðtÞPm
j¼1

Pmj

s¼1
^

Bj
sðtÞ

, (8)

where t 2 Dj; j ¼ 1;2; . . . ;m. The patches constructed by basis
functions defined in Eq. (8) are smooth in the non-overlap region
but with C0 continuity in the blending region. In our future work,
we plan to apply the global parameterization, so that the atlas has
all transition functions among overlapped local charts being affine
[56], and a globally more smooth result could be obtained along
the regions covered by multiple charts.

5.3.3. Surface fitting

Given basis functions Bj
s and their associated control points cj

s,
the rational parametric surface is represented as

SðtÞ ¼
Xm

j¼1

Xmj

s¼1

Bj
sðtÞc

j
s.
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Therefore, the linear least-square problem in Eq. (6) becomes

minimize
Xn

i¼1

kxi �
Xm

j¼1

Xmj

s¼1

Bj
sðu

j
iÞc

j
sk

2. (9)

We simplify the notation by concatenating the data points and
control points into vectors

X ¼ ½x1; x2; . . . ; xn�
0 and C ¼ ½c1

1; c
1
2; . . . ; c

j
s; . . . ; c

mm
m �
0

and rewrite Eq. (9) as

minimizekX � ACk2, (10)

where A is a 3n�M sparse matrix with M ¼
Pm

j¼1mj being the
total number of normalized DCB basis functions. We only treat
control points as variables in Eq. (9). Therefore, this leads to a
sparse linear least-square problem, which can be solved by using
many existing methods. In our experiment, we use the singular
value decomposition (SVD) method to get numerically stable
results.

5.4. Surface refinement

Before this section, the surface reconstruction algorithm
attempts to minimize the total squared distance of the scattered
data X to a DCB surface. It is oftentimes desirable to specify an
error tolerance �, such that each item jjxi �

Pm
j¼1

Pmj

s¼1Bj
sðu

j
iÞc

j
sjj in

Eq. (9) (denoted as ei
j, representing fitting error of vertex xi) is

smaller than this threshold. Towards this goal, we must
repeatedly refine the DCB surface by adding more knots on
parametric domains. This refinement is performed as follows:
1.
 For each patch Xi ¼ fx
i
i1
; xi

i2
; . . . ; xi

#Xi
g, measure fitting error ei

j at
each vertex xi

j and find the largest one ei
j0

. If the maximal fitting
error on every patches is smaller than the threshold �, STOP.
2.
 For each patches Xi, if ei
j0
4�, triangulate the knot set of chart Di

and add one more knot at the barycenter of the triangle where
ui

j0
is located. Then we locally update the Delaunay configura-

tions and corresponding DCB basis functions, and update the
corresponding coefficients matrix A in Eq. (10).
3.
Fig. 6. Fitting gargoyle surface: (a) initial model (59k vertices and 119k faces); (b)

final fitted surface; (c) fitted surface with 13k control points; (d) fitting error

(maximum error 0.34% and root mean error 0.049%).
Solve the least-square problem Eq. (10), GOTO Step 1.

Note that at Step 2, Delaunay configurations can be updated locally
by the high-order Delaunay tree algorithm in Oðn lg nþ 27nÞ

expected time [36]. In addition, all the coefficient elements in
matrix A can be dynamically updated with high efficiency when
new knots are added.

This surface refinement algorithm is an iterative procedure,
where the linear least-square problem (Eq. (9) or Eq. (10)) is
solved repeatedly. If the size of the coefficient matrix A is large,
this procedure takes longer time to satisfy the error threshold
requirement. An effective and practical solution to overcome this
deficiency is to first apply the procedure individually over non-
overlapped vertices on each chart before we globally solve Eq. (9).
Such a strategy essentially divides the problem of Eq. (9) into
several linear least-square problems with coefficient matrices of
much smaller size, therefore, it effectively reduces the total
execution time and improves the adaptivity of our framework to
large raw datasets.

Fig. 5 shows an example, 53 initial knots are placed as shown
in (a), and after refinement, 90 more (yellow) knots are added.
Fig. 7. Rocker-arm: (a) initial model (50k vertices and 100k faces); (b) model

segmentation (15 patches); (c) patch expansion; (d) final fitted surface; (e) fitted

surface with 13k control points; (f) fitting error (maximum error 0.11% and root

mean error 0.012%).
6. Experimental results

We apply our surface fitting algorithm over several real
scattered/unorganized data models. In our experiments, all the
scattered data are uniformly scaled to fit within a unit cube to
compare the fitting error across different models.

Fig. 6 illustrates the result of our surface reconstruction
method on the gargoyle model. The model with 59k vertices is
illustrated in (a); (b) shows our final reconstructed spline surface.
Computed control points are rendered in red points in (c), and the
fitting error is evaluated and color-encoded in (d).

Figs. 7, 8 and 9 show our experiments on the Rocker-Arm, Igea,
and Kitten models, respectively. In each of these figures, the given
model is shown in (a); its segmentation and extended covering
charts are shown in (b) and (c); and the final spline surface and
control points are illustrated in (d) and (e), with the fitting error
color-encoded in (f).
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Fig. 8. Igea: (a) initial model (50k vertices and 100k faces); (b) model

segmentation (20 patches); (c) patch expansion; (d) final fitted surface; (e) fitted

surface with 12k control points; (f) fitting error (maximum error 0.44% and root

mean error 0.024%).

Fig. 9. Kitten: (a) initial model (33k vertices and 70k faces); (b) model

segmentation (17 patches); (c) patch expansion; (d) final fitted surface; (e) fitted

surface with 7k control points; (f) fitting error (maximum error 0:15% and root

mean error 0:027%).

Table 1
The statistics of scattered datasets and surface fitting configurations.

Model Nv Nc Nd m.e. (%) rms (%) it-time (g)

Gargoyle 59k 9k 12 0.34 0.049 51.9

Rocker-arm 50k 13k 15 0.11 0.012 74.8

Igea 50k 12k 20 0.44 0.024 70.3

Kitten 33k 7k 17 0.15 0.027 30.0

Nv , # of vertex; Nf , # of faces; Nc , # of control points, Nd , # of domain; m.e.,

maximum error; rms, root-mean-square error. it-time, the running time for one

global fitting iteration.
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As we can find out in Figs. 6(c), 7(e), 8(e), and 9(e), more
control points locate around protuberant features, because under
conformal parameterization these regions have larger area
stretching factors. This demonstrates from another aspect that
local segmentation and separate parameterization fits our surface
reconstruction framework very well because global surface
parameterization inevitably leads to larger area and angle
distortion. We will also explore other novel parameterization
techniques that can further reduce area and angle distortion in
our future work.

The fitting error of each vertex is normalized (by dividing
maximum error) as

ei
j0

maxfe1
j0
; e2

j0
; . . . ; em

j0
g

.

We color-code fitting errors using the scale 0 (blue) to 1 (red) as
shown in the color-bar of Figs. 6(d), 7(f), 8(f), and 9(f),
respectively. Experimental results demonstrate that our DCB
surfaces approximate given data very well.

Table 1 shows the statistical performance of our surface fitting
procedure on our experimental models. Nv denotes the vertex
number of the scattered model. Nf is its triangular face number. Nc

is the control point number and Nd is the chart number. The
maximum fitting error is denoted as m.e. while the root-mean-
square error is denoted as rms. For most of our test models, the
process of segmentation takes less than 5 min. The subsequent
chart generating and expanding are linear and each topological-
disk chart is parameterized by the standard discrete harmonic
map, which leads to two sparse linear systems and are solved in a
few seconds. As mentioned in Section 5.3.3, we fit each patches,
respectively, before the global fitting. One iteration of local fitting
for a patch with about 70 knots and 9000 vertices usually takes
about 0.75 s in our Intel 2.5G Duo CPU. Necessary local fitting step
varies among different shapes and different rms threshold, and in
our experiments it usually takes 40–120 iterations to reach 0:049-
rms. After the local fitting, about 2–15 iterations of global fitting
are necessary to reach the rms of the entire surface.
7. Conclusion and future work

In this paper, we have developed a new bivariate B-spline
scheme to reconstruct closed and arbitrary topological surfaces,
based on the novel Delaunay configuration of knots.

Compared to other surface fitting scheme, using DCB provides
an elegant and simple knot selection rule. In computer graphics,
some uses subdivision surface for surface fitting. However, in the
CAD/CAM industry (for instance, scientific computations and
physical simulations/analysis), explicit parametric representa-
tions (e.g. splines) are desirable because they provide more
effective and accurate differential operator evaluations, higher
surface continuity and so on. For splines whose fitting methods
are based on the tensor-product B-spline or NURBS surface. The
result surfaces are usually defined as a network of tensor-product
B-spline patches. Due to the inherent rectilinear shape of tensor-
product surface, surfaces with non-trivial topology usually require
a non-trivial stitching process with continuity restrictions.
Fundamentally, bivariate splines defined over triangular or
polygonal domains are more powerful modeling tools. For
example, both DMS and DCB have the property of automatic-
smoothness, therefore they can define a surface over arbitrary
triangulation.

The biggest advantage of using DCB over DMS is the natural
knot selection rule. Specially, when constructing DMS splines,
generating the knot sets for basis construction needs the non-
intuitive insertion of auxiliary knots to be associated with each
generic knot in order to form a knot sequence. In contrast, our DCB
splines use circles to choose knots that are closer to each other as
a natural set in order to construct basis functions. The spline space
spanned from this set of basis functions naturally behaves like
univariate B-splines. Experimental examples demonstrate that
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one can achieve good fitting results when using DCB splines for
surface reconstruction through adaptive refinement and error
threshold control.

Despite that DCB is mathematically elegant and conceptually
simple, limitations of our current scheme include that first, we
only focus on closed surfaces. The basis functions being defined
are always zero at the boundary of its corresponding parameter
domain in our current settings. Therefore, they cannot be used to
construct a function with non-zero value on the boundary, i.e.,
they cannot be trivially used to model surfaces with curved
boundary. One possible solution is that we shall place knots
outside the domain chart, and then trim the corresponding region
of the fitted surface.

Second, like many other spline schemes, modeling sharp
feature is another challenging issue. A natural way is to enforce
more special constraints on knot placement, i.e., to place multiple
and collinear knots along the shape feature. At present, all of our
basis functions are constructed isometrically (locally no three
knots are collinear and no four knots are co-circular), therefore
our spline surface would appear too smooth in the vicinity of
feature-rich regions. In the future, robust feature detection and
flexible knot placement strategies for knots generation will be
studied in this framework.

Third, our current blending region has C0 continuity due to the
local parameterization scheme. Global atlas generation with affine
transition functions among overlapped local charts will be used in
our framework to obtain more smooth result along patch
boundaries.

This paper shows its advantage over multivariate splines and
demonstrate its theoretical elegance. Our ongoing work is on
further improving the efficiency of the algorithm and fitted
surface quality. The trade-offs in computation, memory usage, or
surface quality will be the discussed with more details.

The application we have focused on in this paper is surface
fitting for reverse engineering and shape modeling. Many good
properties of this new spline scheme are inspiring us to foresee
and explore its broader application scopes in trivariate splines for
solid modeling, FEM-based dynamic analysis, and interactive
deformation.
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